![]() |
|
|
|
|
|
|
2m = 180° - (90° - a) - (90° +l- 2b) = a+ 2b- l .
a
sin2a
=
b
sin2b
=
c
sin2g
=
b+c
sin2b+ sin2g
=
b+c
2sin(b+ g)cos(b- g)
=
b+c
2cosacos(b- g)
.
a
sina
=
b+c
cos(b- g)
.
u
sin(90° - a)
=
b
sin2m
and
u
sin(90° - a)
=
c
sin2n
,
a
2sinlcosa
=
u
cosa
=
b
sin2m
=
c
sin2n
=
b+c
sin2m+ sin2n
=
b+c
2sin(m+ n) cos(m- n)
=
b+c
2coslcos(b- g)
=
a
2coslsina
.
D ~ (a -
2(a+u)
1 + mu
, -1), E ~ (a +
2(a+u)
1 + mu
, -1) .
tanÐBAC =
-(2/u)
1 - (1/u2)
= -
2u
u2 - 1
.
tanÐBPC = tanÐBQC
=
(mu - 1)(u - m) - (mu + 1)(u + m)
(u - m)(u + m) + (mu - 1)(mu + 1)
=
-2(m2 u + u)
u2 - m2 + m2 u2 - 1
=
-2(m2 + 1)u
(1 + m2)(u2 - 1)
=
-2u
u2 - 1
.
m-n
a
x -
m+n
b
y + m2 + n2 = 0
m+n
b
x +
m-n
a
y +
(a2 - b2)(m2 - n2)
2ab
= 0 .
P ~
æ
ç
è
(b2 - a2)(m - n)
2a
, 0
ö
÷
ø
.
|BC |2 = m2 + n2 + 2mn(a2 - b2)
|BP |2 =
m2 + n2 + 2mn(a2 - b2)
4a2
LE
LD
=
AB
BD
=
CE
CA
ÐBPC = 2ÐMPC = 2ÐMNC = 2ÐNCE = ÐLCE = ÐBAC .
|MN | =
1
2
[ |BF |+ |CG |] =
1
2
(b + c)sinq =
h
2
|DF | = b cosq , |GE | = c cosq , |DE | = 2(b + c)cosq .
2 |PC |cosr
sin2q
=
|AB |
sinf
sins
sinq
=
|CE |
|PC|
=
|AB |
|PC |
=
2 cosrsinf
sin2q
sinscosq = sinfcosr .
sin(q+ s) + sin(s- q) = sin(f+ r) + sin(f- r).
2 q = q+ (r+ s- f) = q+(r+ r- s) = 2r
bc - ad = b(a + d - b) - ad = (a - b)b - (a - b)d = (a - b)(b - d) > 0 .
bc - ad = b(u - b) - (u - d)d = u(b - d) - (b2 - d2) = (b - d)(u - b - d) .
bc - ad = bc - (b + x)(c - x) = bx - cx + x2 = x2 + x(b - c) > 0 .
aq - bp > 0, br - as > 0 Þ aq - bp ³ 1,br - as ³ 1 .
b = b(qr - ps) = q(br - as) + s(aq - bp) ³ q + s .
F-(r+1) = F-r-1 = F-r+1 - F-r = (-1)r Fr-1- (-1)r+1 Fr = (-1)r+2(Fr-1 + Fr) = (-1)r+2Fr+1 .
tr+1 = tr + tr-1 = (Fr + Fr-1)t+ (Fr-1 + Fr-2) = Fr+1t+ Fr t .
t-(r+1) = t-(r-1) - t-r = (F-(r-1) - F-r)t+ (F-r - F-(r+1)) = F-(r+1)t+ F-(r+2) .
tr+1 = tr ·t = (Fr t+ Fr-1) t = Fr t2 + Fr-1t
= (Fr + Fr-1)t+ Fr = Fr+1 t+ Fr .
t-(r+1) = t-1 t-r = F-r + F-r-1(t- 1) = F-r-1 t+ (F-r - F-r-1)
= F-r-1t+ F-r-2 = F-(r+1)t+ F-(r+1)-1 .
Gn+3 + Gn
= Fn+4Fn+3 + Fn+1Fn
= (Fn+3 + Fn+2)(Fn+2 + Fn+1) +(Fn+3 - Fn+2)(Fn+2 - Fn+1)
= 2(Fn+3 Fn+2 + Fn+2 Fn+1) = 2(Gn+2 + Gn+1) .
Gn+3 + Gn
= Fn+4Fn+2 + Fn+1Fn-1
= (Fn+3 + Fn+2)(Fn+1 + Fn) +(Fn+3 - Fn+2)(Fn+1 - Fn)
= 2(Fn+3 Fn+1 + Fn+2 Fn) = 2(Gn+2 + Gn+1) .
Gn+3 + Gn
= Fn+32 + Fn2 = (Fn+2 + Fn+1)2 + (Fn+2 - Fn+1)2
= Fn+22 + 2Fn+2Fn+1 + Fn+12+ Fn+22 - 2Fn+2Fn+1 + Fn+12 = 2(Gn+2 + Gn+1) .
Gn+3 + Gn
- 2(Gn+1 + Gn+2)
= (Fn+3+uFn+3+v + Fn+uFn+v) - 2(Fn+2+uFn+2+v + Fn+1+uFn+1+v)
= (2Fn+1+u + Fn+u)(2Fn+1+v + Fn+v) + Fn+uFn+v
- 2(Fn+1+u + Fn+u)(Fn+1+v + Fn+v) - 2Fn+1+uFn+1+v
= 0 ,
l =
cosb
cosa
and m =
sinb
sina
.
1 = cos2 b+ sin2 b = l2 cos2 a+ m2 sin2 a = l2 + (m2 - l2)sin2a = l2 - (m- l)lmsin2 a .
cos3 b
cosa
+
sin3 b
sina
= l3 cos2 a+ m3 sin2 a
= l(l2 cos2 a+ m2 sin2 a) + (m- l)m2 sin2 a
= l+ (m- l)m2 sin2 a
=
1
l
[l2 + (l2 - 1)m]
=
1
l
[l2 + l2 m+ l+ lm
= l+ lm+ 1 + m = 1 .
cosa
cosb
+
sina
sinb
= -1 Þ
sin(a+ b) + sinbcosb = 0 . (*)
cos3 b
cosa
+
sin3 b
sina
=
cosb(1 - sin2 b)
cosa
+
sinb(1 - cos2 b)
sina
=
cosb
cosa
+
sinb
sina
- sinbcosb
æ
ç
è
sinb
cosa
+
cosb
sina
ö
÷
ø
=
sin(a+ b)
cosasina
-
cosbsinb(cos(a- b))
cosasina
=
-2 sinbcosb+ 2 sin(a+ b) cos(a- b)
2 sinacosa
using (*)
=
-2 sinbcosb+ [sin2a+ sin2b]
sin2a
= 1
sina
sinb
= ±
æ
ú
Ö
1 - x2
1 - y2
.
x
y
+ 1 = -±
æ
ú
Ö
1 - x2
1 - y2
.
(x2 + 2xy + y2)(1 - y2) = y2(1 - x2) ,
x2 + 2xy = 2xy3 + y4 .
cos3 b
cosa
+
sin3 b
sina
=
y3
x
±(1 - y2)
æ
ú
Ö
1 - y2
1 - x2
=
y3
x
-
(1 - y2)y
x + y
=
y4 + 2xy3 - xy
x(x+y)
=
x2 + xy
x(x + y)
= 1 .
cosa
cosb
+
sina
sinb
+
cos3 b
cosa
+
sin3 b
sina
4[cos2 asinasinb
+ sin2 acosacosb+cos4 bsinasinb+ sin4 bcosacosb]
= 4[cos2 asinasinb+ sin2 acosacosb+ (cos2 b- cos2 bsin2 b)sinasinb
+ (sin2 b- sin2 bcos2 b)cosacosb]
= (4cos2 a+ 4cos2 b- sin2 2b)sinasinb+ (4sin2 a+ 4sin2 b- sin2 2b)cosacosb
= 2sin2acosasinb+ 2sin2bcosbsina+ 2sin2asinacosb+2sin2bcosasinb
- sin2 2b(cosacosb+ sinasinb)
= 2(sin2a+ sin2b) sin(a+ b)- sin2 2bcos(a- b)
= 2sin(a+ b) [sin2a+ sin2b-2sin(a+ b)cos(a- b)] = 0 ,
sin2a+ sin2b = sin(
a+ b
+
a- b
)+ sin(
a+ b
-
a- b
) .
sin(a+ b) = -sinbcosb ,
cosb
cosa
=
-sinb
sina+ sinb
,
sinb
sina
=
-cosb
cosa+ cosb
.
cos3 b
cosa
+
sin3 b
sina
= cos2b
é
ê
ë
-sinb
sina+ sinb
ù
ú
û
+ sin2 b
é
ê
ë
-cosb
cosa+ cosb
ù
ú
û
= -
sinbcosb[cosacosb+sinasinb+ 1]
4 sin
1
2
(a+ b) cos
1
2
(a-b) cos
1
2
(a+ b) cos
1
2
(a- b)
=
sin(a+ b) [cos(a- b) + 1]
[2 sin
1
2
(a+ b) cos
1
2
(a+ b)][2 cos2
1
2
(a- b)]
= 1 .
cos3 b
cosa
+
sin3 b
sina
=
cos2 b(cosbsina) + sin2 b(sinbcosa)
cosasina
=
- cos2 bsinb(cosa+ cosb) -sin2 bcosb(sina+ sinb)
cosasina
=
- cosbsinb(cosacosb+ cos2 b+ sinasinb+ sin2 b)
cosasina
=
- sin2b(1 + cos(a- b))
sin2a
=
- sin2b+ 2sin(a+ b)cos(a- b)
sin2a
=
- sin2b+ sin2a+ sin2b
sin2a
= 1 .
sin75° = sin(45° + 30°) =
1
Ö2
æ
ç
è
Ö3 + 1
2
ö
÷
ø
cos75° = cos(45° + 30°) =
1
Ö2
æ
ç
è
Ö3 - 1
2
ö
÷
ø
.
{ 1, 1, 0, -1, -1, 0, ¼} , { 2, 8, 30, 112, 418, 1560, ¼} , { 3, 27, 240, 2133, ¼} .
Pn+1(x) = x2 Pn (x) - Pn-1(x) (1)
Pn+1 + Pn-1 = Pn (Pn2 - Pn+1Pn-1) .
[Pn+12 - Pn+2Pn]
-[Pn2 - Pn+1Pn-1] = Pn+1(Pn+1 + Pn-1) - Pn (Pn+2 + Pn)
= Pn+1Pn(Pn2 - Pn+1Pn-1) - Pn Pn+1(Pn+12 - Pn+2Pn)
= -Pn+1Pn [(Pn+12 - Pn+2Pn) -(Pn2 - Pn+1Pn-1)] ,
Pn+12 - Pn+2Pn = Pn2 - Pn+1Pn-1
Q0(x) = 0 , Q1(x) = x , Qn+1 = x2 Qn (x) - Qn-1(x)
Qk2(x) - Qk+1(x)Qk-1(x)
= Qk2 (x) - (x2 Qk (x) - Qk-1(x))Qk-1(x)
= Qk (x) (Qk(x) - x2 Qk-1(x)) + Qk-12 (x)
= -Qk (x) Qk-2 (x) + Qk-12 (x) = x2 . QED
Qn+1 (x)
+ Qn-1(x) + Qn+1(x) Qn(x) Qn-1(x)
= x2 Qn (x) + Qn+1(x) Qn (x) Qn-1(x) = Qn (x)(x2 + Qn+1 (x) Qn-1(x)) = Qn3(x)
Þ Qn+1(x) =
Qn3(x) - Qn-1(x)
1 + Qn (x) Qn-1(x)
(n = 1, 2, ¼) .
Qk+1 (x) =
Qk3 (x) - Qk-1(x)
1 + Qk (x) Qk-1(x)
=
Pk3 (x) - Pk-1(x)
1 + Pk (x) Pk-1(x)
= Pk+1(x)
-1 = Pn-1(u) Pn(u) =
Pn-1(u)4 - Pn-1(u)Pn-2(u)
1 + Pn-1(u)Pn-2(u)
Pk-13(x) = Pk-1(x)[x2 + x2 Pk-1(x)Pk-2(x)- Pk-22(x)]
Pk-12 (x) = x2 + x2Pk-1Pk-2(x) - Pk-22(x) .
Pn+1
=
Pn3 - Pn-1
1 + Pn Pn-1
=
Pn (x2 Pn-1 - Pn-2)2 - Pn-1
1 + Pn Pn-1
=
Pn (x4 Pn-12 - x2 Pn-1Pn-2 + x2 - Pn-12) - Pn-1
1 + Pn Pn-1
=
Pn (x2 Pn Pn-1 + x2 - Pn-12) - Pn-1
1 + PnPn-1
since x2 Pn-1 - Pn-2 = Pn
=
(x2 Pn - Pn-1)(1 + Pn Pn-1)
1 + Pn Pn-1
= x2 Pn - Pn-1 .