Problem Set 6
- 31.
-
Find all continuous functions f: R ®R such that
for every
x,
y Î R.
View solution
- 32.
-
Let n ³ 3 be a natural number. Prove that
View solution
- 33.
-
Let n ³ 3 be a positive integer. Are there n positive
integers a1, a2, ¼, an not all the same
such that for each i with
3 £ i £ n we have
ai + Si = (ai, Si) + [ai, Si] . |
|
where
Si =
a1 +
a2 +
¼+
an, and where (·, ·) and
[ ·, ·] represent the greatest common divisor and
least common multiple respectively?
View solution
- 34.
-
Find all integers p for which there are rational numbers
a and b such that the polynomial x5 - px - 1 has at least
one root in common with the polynomial x2 - ax - b.
View solution
- 35.
-
Let P be an arbitrary interior point of an equilateral
triangle ABC. Prove that
|ÐPAB - ÐPAC | ³ |ÐPBC -ÐPCB | . |
|
(
Note: This is Problem 2255 in
CM+MM, September, 1997.)
View solution
- 36.
-
Let n be a positive integer and x > 0. Prove that
(1 + x)n+1 ³ |
(n+1)n+1 nn
|
x . |
|
(
Note: This is Problem 2260 in
CM+MM,
September, 1997.)
View solution
Solutions to Problem Set 6
31.
- 31.
-
First solution. Setting (x, y) = (t, 0) yields
f(t + f(0)) = f(t) for all real t. Setting (x, y) = (0, t)
yields f(f(t)) = f(0) + t for all real t. Hence
f(f(f(t))) = f(t) for all real t, i.e., f(f(z)) = z for
each z in the image of f. Let (x, y) = (f(t), -f(0)). Then
f(f(t) + f(-f(0))) = f(f(t)) - f(0) = f(0) + t - f(0) = t |
|
so that the image of
f contains every real and so
f(
f(
t))
º t for all real
t.
-
-
Taking (x, y) = (u, f(v)) yields
since
v =
f(
f(
v)) for all real
u and
v. In particular,
f(0) = 2
f(0), so
f(0) = 0 and 0 =
f(-
t +
t) =
f(-
t) +
f(
t).
By induction, it can be shown that for each integer
n and each
real
t,
f(
nt) =
nf(
t). In particular, for each rational
r/
s,
f(
r/
s) =
rf(1/
s) = (
r/
s)
f(1). Since
f is continuous,
f(
t) =
f(
t·1) =
tf(1) for all real
t. Let
c =
f(1).
Then 1 =
f(
f(1)) =
f(
c) =
cf(1) =
c2 so that
c =
±1. Hence
f(
t)
º t or
f(
t)
º -
t. Checking reveals that both
these solutions work. (For
f(
t)
º -
t,
f(
x +
f(
y)) = -
x -
f(
y) =
f(
x) +
y, as required.)
- 31.
-
Second solution. Taking (x, y) = (0, 0), we find
that
f(0) = 0 + f(0) Þ f(f(0)) = f(0 + f(0)) = f(0) + f(f(0))Þ f(0) = 0 . |
|
Taking (
x,
y) = (0,
t) yields
f(
f(
t)) =
t for all real
t.
Hence
f(
x +
y) =
f(
x +
f(
f(
y)) =
f(
x) +
f(
y) for all
x,
y, and
we can complete the solution as in the
First Solution.
- 31.
-
Third solution. Taking (x, y) = (0, 0) yields
f(f(0)) = f(0), whence f(f(f(0))) = f(f(0)) = f(0). Taking
(x, y) = (0, f(0)) yields f(f(f(0))) = 2f(0). Hence
2f(0) = f(0) so that f(0) = 0. Taking x = 0 yields
f(f(y)) = y for each y. We can complete the solution as in
the Second Solution.
32.
- 32.
-
First solution. Let N = nnnn - nnn.
Since 1989 = 32 ·13 ·17,
N º 0 (mod 1989) Û N º 0 (mod 9, 13 & 17) . |
|
We require the following facts:
-
-
(i) xu º 0 (mod 9) whenever u ³ 2 and
x º 0 (mod 3).
-
-
(ii) x6 º 1 (mod 9) whenever x \not º 0
(mod 3).
-
-
(iii) xu º 0 (mod 13) whenever x º 0 (mod 13).
-
-
(iv) x12 º 1 (mod 13) whenever x \not º 0
(mod 13), by Fermat's Little Theorem.
-
-
(v) xu º 0 (mod 17) whenever x º 0 (mod 17).
-
-
(vi) x16 º 1 (mod 17) whenever x \not º 0
(mod 17), by FLT.
-
-
(vii) x4 º 1 (mod 16) whenever x = 2y + 1 is odd.
(For, (2y+1)4 = 16y3(y+2) + 8y(3y+1) + 1 º 1 (mod 16).)
-
-
Note that
N = nnn |
é ê
ë
|
n(nnn - nn) - 1 |
ù ú
û
|
= nnn |
é ê
ë
|
nnn (nnn - n - 1) - 1 |
ù ú
û
|
. |
|
-
-
Modulo 17. If n º 0 (mod 17), then
nnn º 0, and so N º 0 (mod 17).
-
-
If n is even, n ³ 4, then nn º 0 (mod 16),
so that
nnn(nnn - n - 1) º 1(nnn - n - 1) º 1 |
|
so
N º 0 (mod 17).
-
-
Suppose that n is odd. Then nn º n (mod 4)
Þ nn - n = 4r for some r Î N |
|
Þ nnn - n = n4r º 1 (mod 16) |
|
Þ nnn - n - 1 º 0 (mod 16) |
|
Þ nnn(nnn - n - 1) º 1 (mod 17 |
|
Hence
N º 0 (mod 17) for all
n ³ 3.
-
-
Modulo 13. If n º 0 (mod 13), then
nnn º 0 and N º 0 (mod 13).
-
-
Suppose that n is even. Then nn º 0 (mod 4),
so that nnn - nn º 0 (mod 4).
Suppose that n is odd. Then
nnn - n - 1 º 0 (mod 16) and so
nnn - nn º 0 (mod 4).
-
-
If n º 0 (mod 3), then nn º 0 so
nn(nnn - n - 1) º 0 (mod 3). If n º 1
(mod 3), then nnn - n º 1 so nn(nnn-n - 1) º 0 (mod 3). If n º 2 (mod 3), then, as
nn - n is always even, nnn-n º 1 so
nn(nnn-n - 1) º 0 (mod 3). Hence, for all n,
nnn - nn º 0 (mod 3).
-
-
It follows that nnn - nn º 0 (mod 12)
for all values of n. Hence, when n is not a multiple of
13, n(nnn - n) º 1 so N º 0 (mod 13).
-
-
Modulo 9. If n º 0 (mod 3), then
nnn º 0 (mod 9), so N º 0 (mod 9). Let
n \not º 0 (mod 9). Since nnn - nn is divisible
by 12, it is divisible by 6, and so
n(nnn - nn) º 1 and N º 0 (mod 9).
Hence N º 0 (mod 9) for all n.
-
-
The required result follows.
33.
- 33.
-
First solution. Letting bi = (ai, Si), we find
that
[ai , Si] = |
ai Si (ai, Si)
|
= |
ai Si bi
|
. |
|
The given condition is equivalent to
ai +
Si =
bi + (
ai Si/
bi),
which is equivalent to
0 = bi2 - (ai + Si)bi + ai Si = (bi - ai)(bi - Si) . |
|
We can achieve the condition by making
ai = (
ai,
Si) and
Si = [
ai,
Si]. Let
a1 =
a2 = 1,
ai = 2
i-2 for
i ³ 3.
Then
Si = 1 + |
i å
j = 2
|
2j-2 = 1 + (2i-1 - 1) = 2i-1 |
|
Þ (ai, Si) = 2i-2 , [ai, Si] = 2i-1 |
|
for
i ³ 3.
- 33.
-
Second solution. Let ai = 1, a2 = 2 and
ai = 3 ·2i-3 for i ³ 3. Then
Si = 1 + 2 + 3 |
i-3 å
j = 0
|
2j = 1 + 2 + 3(2i-2 - 1) = 3 ·2i-2 |
|
Þ (ai, Si) = 3 ·2i-3 , [ai, Si] = 3 ·2i-2 |
|
for
i ³ 3.
- 33.
-
Third solution. [K. Purbhoo] Choose a1 at will,
and let ai = Si-1 for i ³ 2. Then
Si = Si-1 + ai = 2ai, ai + Si = 3ai, (ai, Si) = ai
and [ai, Si] = 2ai for i ³ 2.
- 33.
-
Fourth solution. [K. Yeats] Let a1 = 1,
a2 = 3 and an = 2n-1 for n ³ 3. Then
Sn = 2n for n ³ 2 and, for each i with 3 £ i £ n,
(ai, Si) = 2i-1 and [ai, Si] = 2i.
34.
- 34.
-
First solution. A common rational root must be
1 or -1, in which case the respective values of p are 0 and 2.
These roots are shared with x2 - 1 (a = 0, b = 1). Suppose
that there is a common nonrational root r. Then
r2 = ar + b so that
r4 = a2 r2 + 2abr + b2 = (a3 + 2ab)r + (a2 b + b2) |
|
whence
pr + 1 = r5 = (a3 + 2ab)r2 + (a2 b + b2)r = (a4 + 3a2 b + b2)r + b(a3 + 2ab) . |
|
Since
r is not rational,
p = a4 + 3a2 b + b2 and 1 = b(a3 + 2ab) . |
|
Hence 2
ap - 1 = 2
a5 + 5
a3 b, so that
5
a3 b = 2
ap - 2
a5 - 1. Thus
1 = |
æ ç
è
|
|
-2a5 + 2ap - 1 5a3
|
|
ö ÷
ø
|
|
æ ç
è
|
a3 + |
-4a5 + 4pa - 2 5a2
|
|
ö ÷
ø
|
|
|
from which we obtain that
25a5 = (-2a5 + 2pa - 1)(a5 + 4pa - 2) . |
|
This simplifies to
a10 + 3pa6 + 11a5 - 4p2 a2 + 4pa - 1 = 0 . |
|
This is a polynomial equation for
a with integer coefficients.
In order that
a be rational, it must be an integer dividing 1.
Hence
a =
±1. If
a = 1, then 1 =
b(1 + 2
b), whence
b =
1/
2 or
b = -1. The first value does not give
an integer value of
p, but the second yields
p = -1.
In this case, the two polynomials are
x2 -
x + 1 and
x5 +
x - 1 = (
x2 -
x + 1)(
x3 +
x2 - 1) with common roots
-
w and -
w2, where
w is an imaginary cube root
of unity.
If
a = -1, we get the equation 2
b2 +
b + 1 = 0 which is
satisfied by no rational value of
b. Thus the possibilities are
p = -1, 0, 2.
- 34.
-
Second solution. The rational root case can be
handled as in the first solution. By long division, we find that
x5 - px - 1 = (x2 - ax - b)[x3 + ax2 + (a2 + b)x + (a3 + 2ab)] |
|
+ (a4 + 3a2b + b2 - p)x + (a3b + 2ab2 - 1) . |
|
If
r is a nonrational root of the quadratic and the quintic,
then its quadratic conjugate is also. So the quadratic must divide
the quintic and both coefficients of the foregoing division must
vanish. Hence
p =
a4 + 3
a2b +
b2 and 1 =
b(
a3 + 2
ab), and
we can proceed as in the first solution.
35.
- 35.
-
First solution. The result is clear if P is on
the bisector of the angle at A, since both sides of the inequality
are 0.
-
-
Wolog, let P be closer to AB than AC, and let Q be the
image of P under reflection in the bisector of the angle A. Then
ÐPAQ = ÐPAC - ÐQAC = ÐPAC - ÐPAB |
|
and
ÐPCQ = ÐQCB - ÐPCB = ÐPBC - ÐPCB . |
|
Thus, it is required to show that
ÐPAQ ³ ÐPCQ.
-
-
Produce PQ to meet AB in R and AC in S. Consider
the reflection  with axis RS. The circumcircle
C of DARS is carried to a circle C¢ with
chord RS. Since ÐRCS < 60° = ÐRAS and the
angle subtended at the major arc of C¢ by RS is
60°, the point C must lie outside of C¢.
The circumcircle D of DAPQ is carried by
 to a circle D¢ with chord PQ. Since D
is contained in C, D¢ must be contained in
C¢, so C must lie outside of D¢.
Hence ÐPQC must be less than the angle subtended at the
major arc of D¢ by PQ, and this angle is equal to
ÐPAQ. The result follows.
36.
- 36.
-
First solution. By the Arithmetic-Geometric Means
Inequality, we have that
|
1+x n+1
|
= |
n(1/n) + x n+1
|
³ |
é ê
ë
|
|
æ ç
è
|
|
1 n
|
|
ö ÷
ø
|
n
|
x |
ù ú
û
|
[1/(n+1)]
|
|
|
so that
and the result follows.
- 36.
-
Second solution (by calculus). Let
f(x) = nn (1 + x)n+1 - (n+1)n+1x for x > 0 . |
|
Then
f¢(x) = (n+1)[nn (1 + x)n - (n+1)n] = (n+1)nn[(1 + x)n - (1 + |
1 n
|
)n ] |
|
so that
f¢(
x) < 0 for 0 <
x < 1/
n and
f¢(
x) > 0 for 1/
n <
x.
Thus
f(
x) attains its minimum value 0 when
x = 1/
n and so
f(
x)
³ 0 when
x > 0. The result follows.
- 36.
-
Third solution. Let u = nx - 1 so that
x = (1 + u)/n. Then
|
(1 + x)n+1 - |
(n+1)n+1 nn
|
x |
|
= (1 + |
1 n
|
+ |
u n
|
)n+1 - (1 + |
1 n
|
)n+1(1 + u) |
| |
= (1 + |
1 n
|
)n+1 + (n+1)(1 + |
1 n
|
)n |
u n
|
+ |
æ ç
è
|
n+1
2
|
ö ÷
ø
|
(1 + |
1 n
|
)n-1( |
u n
|
)2 |
| |
+ |
æ ç
è
|
n+1
3
|
ö ÷
ø
|
(1 + |
1 n
|
)n-2( |
u n
|
)3 + ¼- (1 + |
1 n
|
)n+1(1 + u) |
| |
= |
æ ç
è
|
n+1
2
|
ö ÷
ø
|
(1 + |
1 n
|
)n-1( |
u n
|
)2+ |
æ ç
è
|
n+1
3
|
ö ÷
ø
|
(1 + |
1 n
|
)n-2( |
u n
|
)3 + ¼ . |
|
| |
|
This is clearly nonnegative when
u ³ 0. Suppose that
-1 <
u < 0. For 1
£ k £ n/2, we have that
|
æ ç
è
|
n+1
2k
|
ö ÷
ø
|
(1 + |
1 n
|
)n-2k+1( |
u n
|
)2k+ |
æ ç
è
|
n+1
2k+1
|
ö ÷
ø
|
(1 + |
1 n
|
)n-2k ( |
u n
|
)2k+1 |
|
= |
(n+1)!(1 + 1/n)n-2k (2k+1)!(n+1-2k)!
|
|
æ ç
è
|
|
u n
|
|
ö ÷
ø
|
2k
|
[(2k+1)(1 + |
1 n
|
) +(n+1 - 2k)( |
u n
|
) ] . |
|
This will be nonnegative if and only if the
quantity in square brackets is
nonnegative. Since
u > -1, this quantity exceeds
(2k+1)(1 + |
1 n
|
) - (n + 1 - 2k)( |
1 n
|
) = |
æ ç
è
|
|
n+1 n
|
|
ö ÷
ø
|
(2k + 1 - 1) - |
2k n
|
= 2k > 0 . |
|
Thus, each consecutive pair of terms in the sequence
|
æ ç
è
|
n+1
2
|
ö ÷
ø
|
(1 + |
1 n
|
)n-1( |
u n
|
)2+ |
æ ç
è
|
n+1
3
|
ö ÷
ø
|
(1 + |
1 n
|
)n-2( |
u n
|
)3 + ¼ |
|
has a positive sum and so the desired result follows.