LAURENT MARCOUX, Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario N2L 3G1 Amenable, abelian operator algebras

Suppose that \mathcal{A} is a Banach algebra and that \mathcal{M} is a Banach space which is also a bimodule over \mathcal{A} . If the action of \mathcal{A} on \mathcal{M} is continuous, then we say that \mathcal{M} is a Banach bimodule over \mathcal{A} . For these bimodules, the dual space \mathcal{M}^* is automatically a Banach bimodule over \mathcal{A} via the actions $a \cdot \varphi(m) := \varphi(m \cdot a)$ and $\varphi \cdot a(m) := \varphi(a \cdot m)$ for all $a \in \mathcal{A}$, $m \in \mathcal{M}$ and $\varphi \in \mathcal{M}^*$. A derivation of an algebra \mathcal{A} into a bimodule \mathcal{M} is a map δ which satisfies $\delta(ab) = a \cdot \delta(b) + \delta(a) \cdot b$ for all $a, b \in \mathcal{A}$. Examples include the inner derivations $\delta_m(a) = a \cdot m - m \cdot a$ for $m \in \mathcal{M}$ fixed. Finally, \mathcal{A} is said to be amenable if all derivations of \mathcal{A} into dual Banach bimodules \mathcal{M} are inner.

In this talk we shall discuss the problem of similarity of abelian, amenable algebras of operators on a Hilbert space $\mathcal H$ to C^* -algebras.