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Let us say that two sequences of pairwise distinct reals ..., a1,a9,... and ... by, ba,... defined on the same set S (which
can be finite, or equal to N or Z) are equivalent if for all 4,5 € S we have a; < a; if and only if b; < b;. An equivalence class
of sequences on S will be called an (S-)permutation. An S-permutation can be also interpreted as a linear ordering of S. A
permutation @ having a representative a = ... a1, as, ... is called t-periodic if for all 7, j such that ¢,j,i+¢,j+t € S we have
a; < a; if and only if a;4+ < aj4¢. An N-permutation is called ultimately t-periodic if the periodicity property holds for all
1,7 > ng for some ng.

Surprisingly, for all ¢ > 2 there exist infinitely many ¢-periodic Z-permutations. We characterize them and give a way to code
each of them.

Then we define complexity fz(n) of a permutation @ as the number of permutations (i.e., equivalence classes) Gx, Gr11,---; Gktn_1-
Analogously to the subword complexity of words, this function is non-decreasing, and we have:

Theorem 1 Let @ be a Z (N-)permutation; then fz(n) < C if and only if @ is periodic (ultimately periodic).

However, other properties of subword complexity cannot be directly extended to complexity of permutations: in particular,
one-sided and two-sided infinite permutations have different minimal complexity.

Theorem 2 For each unbounded growing function g(n) there exists a not ultimately periodic N-permutation @ with fz(n) <
g(n) for all n > ng. On the other hand, for each non-periodic Z-permutation @ we have fz(n) > n — C for some constant C

which can be arbitrarily large.
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