ANNA FRID, Sobolev Institute of Mathematics SB RAS On complexity of infinite permutations

Let us say that two sequences of pairwise distinct reals \ldots, a_1, a_2, \ldots and \ldots, b_1, b_2, \ldots defined on the same set S (which can be finite, or equal to $\mathbb N$ or $\mathbb Z$) are equivalent if for all $i,j\in S$ we have $a_i< a_j$ if and only if $b_i< b_j$. An equivalence class of sequences on S will be called an (S-)permutation. An S-permutation can be also interpreted as a linear ordering of S. A permutation \overline{a} having a representative $a=\ldots a_1,a_2,\ldots$ is called t-periodic if for all i,j such that $i,j,i+t,j+t\in S$ we have $a_i< a_j$ if and only if $a_{i+t}< a_{j+t}$. An $\mathbb N$ -permutation is called t-periodic if the periodicity property holds for all $i,j\geq n_0$ for some n_0 .

Surprisingly, for all $t \geq 2$ there exist infinitely many t-periodic \mathbb{Z} -permutations. We characterize them and give a way to code each of them.

Then we define *complexity* $f_{\overline{a}}(n)$ of a permutation \overline{a} as the number of permutations (*i.e.*, equivalence classes) $\overline{a_k, a_{k+1}, \dots, a_{k+n-1}}$. Analogously to the subword complexity of words, this function is non-decreasing, and we have:

Theorem 1 Let \overline{a} be a \mathbb{Z} (\mathbb{N} -)permutation; then $f_{\overline{a}}(n) \leq C$ if and only if \overline{a} is periodic (ultimately periodic).

However, other properties of subword complexity cannot be directly extended to complexity of permutations: in particular, one-sided and two-sided infinite permutations have different minimal complexity.

Theorem 2 For each unbounded growing function g(n) there exists a not ultimately periodic \mathbb{N} -permutation \overline{a} with $f_{\overline{a}}(n) \leq g(n)$ for all $n \geq n_0$. On the other hand, for each non-periodic \mathbb{Z} -permutation \overline{a} we have $f_{\overline{a}}(n) \geq n - C$ for some constant C which can be arbitrarily large.

This is a joint work with D. G. Fon-Der-Flaass.