We present a new algorithm (named NEP for NonExpansive Proximal mapping) to compute the discrete Moreau envelope $M_{\lambda,X}(s) = \min_{x \in X} \left[\frac{\|s-x\|^2}{2\lambda} + f(x)\right]$ of a function f, where X is a discrete grid and $\lambda > 0$. Numerical comparisons between the NEP and two existing algorithms: The Linear-time Legendre Transform (LLT) and the Parabolic Envelope (PE) algorithms will be shown along with worst-case time complexity, convergence results, numerical comparison, and examples.

The algorithms will be applied to compute numerical solutions to Hamilton–Jacobi equations, and the distance transform of image processing.

References

- Y. Lucet, Faster than the Fast Legendre Transform, the Linear-time Legendre Transform. Numer. Algorithms 16(1997), 171–185.
- [2] _____, Fast Moreau Envelope computation I: Numerical algorithms. Technical Report, University of British Columbia Okanagan, 2005.
- [3] _____, A linear euclidean distance transform algorithm based on the Linear-time Legendre Transform. In: Proceedings of the Second Canadian Conference on Computer and Robot Vision (CRV 2005), Victoria, BC, May 2005, IEEE Computer Society Press.

YVES LUCET, University of British Columbia Okanagan, 3333 University Way, Kelowna, BC V1V 1V7 *Fast Moreau Envelope Algorithms and Applications*