SUSAN NIEFIELD, Union College

The Glueing Construction and Double Categories

For a small category \mathbb{B} and a double category \mathbb{D} , let $\operatorname{Lax}_N(\mathbf{B}, \mathbb{D})$ denote the category whose objects are vertical normal lax functors $\mathbf{B} \to \mathbb{D}$ and morphisms are horizontal lax transformations. If \mathbb{D} is the double category of toposes, locales, or topological spaces (see table below), then the glueing construction induces a functor from $\operatorname{Lax}_N(\mathbf{B}, \mathbb{D})$ to the horizontal category $\mathbf{H}\mathbb{D}$.

Objects	Horizontal 1-Cells	Vertical 1-Cells	2-Cells
toposes \mathcal{X}	geometric morphisms $\mathcal{X} ightarrow \mathcal{B}$	finite limit preserving $\mathcal{X}_1 { o} \mathcal{X}_2$	$egin{array}{cccc} \mathcal{X}_1 ightarrow \mathcal{B}_1 \ rac{1}{2} & \leftarrow & \ddagger \ \mathcal{X}_2 ightarrow \mathcal{B}_2 \end{array}$
locales X	locale morphisms $X \rightarrow B$	finite meet preserving $X_1 {\leftrightarrow} X_2$	$\begin{array}{c} X_1 \to B_1 \\ \downarrow & \geq & \downarrow \\ X_2 \to B_2 \end{array}$
spaces X	continuous functions $X \to B$	finite meet preserving $\mathcal{O}(X_1) \mapsto \mathcal{O}(X_2)$	$\mathcal{O}(X_1) \to \mathcal{O}(B_1)$ $\begin{array}{c} \downarrow & \geq & \downarrow \\ \mathcal{O}(X_2) \to \mathcal{O}(B_2) \end{array}$

For each of these double categories, we know that $Lax_N(2, \mathbb{D})$ is equivalent to $H\mathbb{D}/S$, where 2 is the 2-element totally ordered set and S is the Sierpinski object of \mathbb{D} . In this talk, we consider analogues of this equivalence for more general categories B.