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Report — Forty-Second Canadian Mathematical Olympiad 2010

The Canadian Mathematical Olympiad (CMO) is an annual national mathematics competition
sponsored by the Canadian Mathematical Society (CMS) and is administered by the Canadian
Mathematical Olympiad Committee (CMO Committee), a sub-committee of the Mathematical
Competitions Committee. The CMO was established in 1969 to provide an opportunity for
students who performed well in various provincial mathematics competitions to compete at a
national level. It also serves as preparation for those Canadian students competing at the
International Mathematical Olympiad (IMO).

Students qualify to write the CMO by earning a sufficiently high score on the Sun Life Financial
Canadian Open Mathematics Challenge (COMC). This year, students with the top 68 COMC
scores were invited outright to write the CMO. Approximately 100 others, next in rank, were
invited to send solutions to a Repechage set of 10 problems posted online within a week to the
University of Waterloo. Twenty four students were invited from the Repechage. The CMO
Qualifying Repechage that in the past few years has been run on experimental basis is now a
well-established competition with the goal of selecting additional students for the CMO. | am
grateful to lan VanderBurgh for setting this up and assembling a team of markers consisting of
Serge D'Alessio, Fiona Dunbar, Mike Eden, Barry Ferguson, Steve Furino, Judith Koeller, Jen
Nissen, J.P. Pretti, lan VanderBurgh and Troy Vasiga, to go through the 82 scripts received.

The Society is grateful for the support from Sun Life Financial and the other sponsors listed on
the previous page.

| am very grateful to the CMO Committee members for submitting the problems, reviewing the
test and marking the solutions: Andrew Adler, Edward Barbeau, Jason Bell, Julia Gordon, Robert
Morewood, Zinovy Reichstein, Naoki Sato, Jozsef Solymosi and Adrian Tang.Thanks also go to
Thomas Griffiths for reviewing the final paper and to Joseph Khoury for translating the problems
into French. Finally, I'd like to thank Susan Latreille, Laura Alyea and the Executive Director
Johan Rudnick for the hard work done at the CMS headquarters.

Kalle Karu, Chair
Canadian Mathematical Olympiad Committee
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The 42™ Canadian Mathematical Olympiad was written on Wednesday, March 24, 2010. A total
of 98 sets of solutions were received. Of these, 77 were eligible for official prizes. There were 80
students from schools in Canada and 18 from abroad. Six Canadian provinces were represented,
with the number of contestants as follows:

AB (7) BC(19) MB (1) ON (48) QC (4) SK (1)

The 2010 CMO consisted of five questions, each marked out of seven. The maximum score
obtained by the winner was 30 marks. The official contestants were grouped into four divisions
according to their scores as follows:

Division Range of Scores # of Students
I 19-30 8
] 15-18 16
11 9-14 27
v 0-8 47
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FIRST PRIZE - Sun Life Financial Cup - $2000
Alex Song
Vincent Massey Secondary School, Windsor, ON
SECOND PRIZE - $1500
James Rickards
Colonel By Secondary School, Greely, ON
THIRD PRIZE - $1000

Jonathan Zung

University of Toronto Schools, Toronto, ON

HONOURABLE MENTIONS - $500

Robin Cheng
Pinetree Secondary School, Coquitlam, BC

Zhi Qiang Liu
Don Mills Collegiate Institute, Toronto, ON

Chen Sun
A.B. Lucas Secondary School, London, ON

Jixuan Wang
Don Mills Collegiate Institute, Toronto, ON

Yugi Zhu
University Hill Secondary School, Vancouver, BC
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Division 1

Alex Song
James Rickards
Jonathan Zung
Robin Cheng
Zhi Qiang Liu
Chen Sun
Jixuan Wang
Yuqi Zhu
Division 2
Yaroslav Babich
Brian Bi
Zhangchi Chen*
Calvin Deng
James Duyck
Neil Gurram
Soroosh Hemmati
Heinrich Jiang
Kevin Li

Mariya Sardarli
Susan Sun
Zijian Yao*

Bill Ye

Pei Jun Zhao
Kevin Zhou
Jonathan Y Zhou

Division 3

Joshua Alman
Ram Bhaskar*
Sifan Bi*
Matthew Brennan
Richard Chen
Liging Ding

Kun Dong*

Yale Fan*

Jun Hou Fung*
Jiayue Gao

Fang Guo
Ursula Anne Lim
David Siqi Liu
Jackie Liu
Anupa Murali
Chang Sun Park
Zhongwu Shi*
Hunter Spink
Richard Wang

19-30

Vincent Massey S.S.

Colonel By S.S.

University of Toronto Schools
Pinetree S.S.

Don Mills C.I.

A.B. LucasS.S.

Don Mills C.I.

University Hill S.S.

15-18

Sir Winston Churchill H.S.
Woburn C.1.

Suzhou H.S., China
Enloe High School
Vincent Massey S.S.
ICAE

Western Canada H.S.
Vincent Massey S.S.
A&M Consolidated H.S.
Strathcona Comp. H.S.
West Vancouver S.S.
Lester Pearson College
Olympiads School
London Central S.S.
Woburn C.1.

Pinetree S.S.

9-14

University of Toronto Schools
ICAE

Sir John A. Macdonald S.S.
Upper Canada College School
Sir John A. Macdonald C.I.
Branksome Hall

Sir William Mulock S.S.

Valley C.S.

Can. Int’l School of Hong Kong
Sir Winston Churchill S.S.
Richmond Hill H.S.

Burnaby North S.S.

Vincent Massey S.S.

Sir Winston Churchill S.S.
Bishop Brady H.S.

Magee S.S.

Suzhou H.S., China

Western Canada H.S.

Sir Winston Churchill S.S.

ON
ON
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ON
ON
ON
BC
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AB
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ON
ON
ON

ON
M
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ON
ON
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ON
BC
ON
BC
NH
BC

AB
BC

Zexuan Wang
Shen Wang
Tongbin Wu
Yu Wu

Allen Yang
Steven Yu
Joe Zeng
Kaiven Zhou

Division 4

Steven Chang*
Brynmor Chapman*
Wonjohn Choi*
Alexander Cowan
Yuchen Cui
Aden Dong
Brandon Ewonus
Harsha Gotur*
Changho Han
Louis Hong
Albert Hu
Sufyan Khan
Namhun Kim
Sung Jun Kim#*
David Kong

Leo Lai

Eung Bum Lee
Sukwan Lee
Shen Li

Felix Li

Albert Liao
Yangsheng Liu
David Lu*
Juntao Luo
Tonghui Ma
Tina Marie Mitre
Ryan Peng
Aurick Qiao
Ritvik Ramkumar
Cristina Rosu
Wen Yi Song
Shai Spilberg
Lexuan Wang
Michael Wong
Kaiyu Wu

Tian Xia

Yejia Xu*

Yung Lin Yang

A.Y. Jackson S.S.

Lord Byng S.S.

White Oaks S.S.
Agincourt C.1.

Cary Academy
Pinetree S.S.

Don Mills C.I.
Strathcona Comp. H.S.

0-8

ICAE

Valley C.S.

St. Francis Xavier S.S.
Marianopolis College
Martingrove C.I.

A.Y. Jackson S.S.

St. Michael’s Univ. School
ICAE

Bayview S.S.

Sir John A. Macdonald S.S.
Northern S.S.

Earl Haig S.S.

ICAE

South Island S.S. Hong Kong
Glenforest S.S.

Prince of Wales S.S.

West Vancouver S.S.
Heritage Woods S.S.
Marianopolis College
Univ. of Toronto Schools
St. John's Ravenscourt
Dr. Norman Bethune C.I.
ICAE

Lawrence Park C.I.

Sir John A. Macdonald C.I.
Dawson College
Centennial College
Vincent Massey S.S.
Glenforest S.S.

Univ. of Toronto Schools
Semiahmoo S.S.

Vanier College

Hugh McRoberts S.S.
Western Canada H.S.
Meadowvale S.S.

The Woodlands School
Suzhou High School
Northern S.S.
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Mertcan Yetkin* Tevitol H.S., Turkey

Fan Yin Vincent Massey S.S.
Daniel Yoo Thornhill S.S.

Simon Younan St. Francis Xavier S.S.
Fangcun Yu Sir John A. Macdonald C.1.
Eric Zhan Univ. of Toronto Schools
Cyril Zhang Don Mills C.I.

Justine Zhang Sir Winston Churchill H.S.
Allen Zhang Univ. Transition Program

ON
ON
ON
ON
ON
ON
AB
BC

The students indicated by * wrote the 2010 CMO as unofficial candidates.
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The Grader’s Report

The 2010 CMO was marked by Andrew Adler, Jason Bell, Julia Gordon, Robert Morewood and
Kalle Karu on April 10, 2010. All 95 papers received by that time were carefully marked once.
Then the top 1/3 of papers with scores 13 or higher were then marked the second time.

The overall difficulty of the problems this year was very good for separating the top students.
The highest 8 scores were evenly spaced in the range 19-30. This also meant that the majority of
the scores were below 15 marks. The table below lists the number of points earned for each
problem.

Score Problem #1 Problem #2 Problem #3 Problem #4 Problem #5
7 2 49 7 9 3
6 1 5 3 1 0
5 2 0 21 0 0
4 7 4 3 3 1
3 19 3 7 2 2
2 12 3 9 9 1
1 42 8 6 23 5
0 10 11 17 13 32
- 3 15 25 38 54

The problems this year did not span a scale from very easy to very hard. They were mostly at the
same level of difficulty, the easiest two being the Euclidean geometry problem (Problem #2) and
the speed-skating problem (Problem #3). The remaining problems were equally hard, requiring
knowledge of different areas, such as graphs, division of polynomials, modular arithmetic.

Problem #1. Even though appearing as the first problem, this was not the easiest one. Many
students got part (a) of the problem correct, but very few correct solutions to part (b) were
found. The special case of n=27k-2 was often thought to be the only solution to part (b). Another
common omission was to construct a tiling with a given value of f(n), but not prove that this is
indeed the minimal tiling. Since this was the first problem, almost everybody attempted it.
Some students spent a long time on it, often trying to prove a wrong conjecture.

Problem #2. There were a number of different approaches to this problem, many of them
leading to correct solutions. The most popular correct solution was the one coming from
considering two pairs of similar right triangles (FAP similar to PGB, and AGP similar to PBH, in
the notation of the official Solution 2). Solution 1 also occurred a few times, with a few
variations, but much less frequently. There was one solution (and two or three more entirely
unsuccessful attempts) by computing everything in coordinates (the successful solution involved
choosing reasonable coordinate axes and using the formula for a distance from a point to a
given line). The most common error was the one that appears in the official Solution 2: when
discussing these cyclic quadilaterals, some students overlooked the possibility that P might be
close enough to A or B (on the larger arc between the two), so that the foot of the perpendicular
line from P to AB is outside the circle. In this case some slightly different angles need to be
considered.

Canadian Mathematical Society 6 Société mathématique du Canada
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Problem #3. The problem was not very hard, but very few students gave a correct answer. The
most common approach was to compute the time it takes to finish the race. From this one can
find that the fastest skater passes the slowest one 60 times. The most common error was to
then conclude that there are 59 possibilities for the middle racer, failing to notice that if this
number is not relatively prime to 60, then the race ends earlier. Two marks were taken off for
this mistake, which explains the relatively large number of 5 marks. The approach given in the
first official solutions was not used by any student. The alternate solution was the most often
used one.

Problem #4. The main difficulty here was that many students did not know what a graph is. This
possibility was discussed during problem selection and a short definition of a graph was added
to the problem. This did not seem to clear the definition. Sometimes a graph was assumed to
be a string of nodes and edges, sometimes a square grid. This problem was sufficiently abstract,
so that doing examples with simple graphs did not lead to a proof. Applying induction was the
only successful approach. A couple of students reduced the problem to solving a system of
linear equations over the 2-element field, but no complete proof in this direction was given.

Problem #5. The main difficulty in problem 5 was that it was the last problem and most students
ran out of time. Only 3 students fully solved it. A few more, not many, got part marks. Some
tried a doomed induction on degree. The only successful approach started by expressing
P(x)/Q(x) as A(x)+R(x)/Q(x). Several who tried this unfortunately assumed or even asserted that
SA(x)$ has integer coefficients. Several students made partial progress by arguing more or less
correctly that R(x)= 0, though the argument here was often not clear.

Canadian Mathematical Society 7 Société mathématique du Canada
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CANADIAN MATHEMATICAL OLYMPIAD 2010
PROBLEMS AND SOLUTIONS

(1) For a positive integer n, an n-staircase is a figure consisting of unit squares, with
one square in the first row, two squares in the second row, and so on, up to n
squares in the n'® row, such that all the left-most squares in each row are aligned
vertically. For example, the 5-staircase is shown below.

Let f(n) denote the minimum number of square tiles required to tile the n-
staircase, where the side lengths of the square tiles can be any positive integer.
For example, f(2) =3 and f(4) = 7.

(a) Find all n such that f(n) =n.
(b) Find all n such that f(n) =n+ 1.

Solution. (a) A diagonal square in an n-staircase is a unit square that lies on
the diagonal going from the top-left to the bottom-right. A minimal tiling of an
n-staircase is a tiling consisting of f(n) square tiles.

Observe that f(n) > n for all n. There are n diagonal squares in an n-staircase,
and a square tile can cover at most one diagonal square, so any tiling requires at
least n square tiles. In other words, f(n) > n. Hence, if f(n) = n, then each
square tile covers exactly one diagonal square.

Let n be a positive integer such that f(n) = n, and consider a minimal tiling of
an n-staircase. The only square tile that can cover the unit square in the first row
is the unit square itself.

Now consider the left-most unit square in the second row. The only square tile
that can cover this unit square and a diagonal square is a 2 x 2 square tile.

_I
_I_‘




Next, consider the left-most unit square in the fourth row. The only square tile
that can cover this unit square and a diagonal square is a 4 x 4 square tile.

Continuing this construction, we see that the side lengths of the square tiles
we encounter will be 1, 2, 4, and so on, up to 2¥ for some nonnegative integer k.
Therefore, n, the height of the n-staircase, is equal to 14+2+44---42F = 2k+1 1,
Alternatively, n = 2F — 1 for some positive integer k. Let p(k) = 2% — 1.

Conversely, we can tile a p(k)-staircase with p(k) square tiles recursively as
follows: We have that p(1) = 1, and we can tile a 1-staircase with 1 square tile.
Assume that we can tile a p(k)-staircase with p(k) square tiles for some positive
integer k.

Consider a p(k + 1)-staircase. Place a 2% x 2¥ square tile in the bottom left

corner. Note that this square tile covers a digaonal square. Then p(k + 1) — 2% =
2k+l 1 — 2k = 2% — 1 = p(k), so we are left with two p(k)-staircases.

p(k) —LI_‘
2k —|—|_‘

Furthermore, these two p(k)-staircases can be tiled with 2p(k) square tiles, which
means we use 2p(k) + 1 = p(k + 1) square tiles.

Therefore, f(n) = n if and only if n = 28 — 1 = p(k) for some positive integer
k. In other words, the binary representation of n consists of all 1s, with no 0s.

(b) Let n be a positive integer such that f(n) =n + 1, and consider a minimal
tiling of an n-staircase. Since there are n diagonal squares, every square tile
except one covers a diagonal square. We claim that the square tile that covers
the bottom-left unit square must be the square tile that does not cover a diagonal
square.

If n is even, then this fact is obvious, because the square tile that covers the
bottom-left unit square cannot cover any diagonal square, so assume that n is odd.
Let n = 2m + 1. We may assume that n > 1, so m > 1. Suppose that the square
tile covering the bottom-left unit square also covers a diagonal square. Then the
side length of this square tile must be m + 1. After this (m + 1) x (m + 1) square

tile has been placed, we are left with two m-staircases.
2




T
m+ 1 —LH

m+1 M

Hence, f(n) = 2f(m) + 1. But 2f(m) + 1 is odd, and n + 1 = 2m + 2 is even,
so f(n) cannot be equal to n + 1, contradiction. Therefore, the square tile that
covers the bottom-left unit square is the square tile that does not cover a diagonal
square.

Let t be the side length of the square tile covering the bottom-left unit square.
Then every other square tile must cover a diagonal square, so by the same con-
struction as in part (a), n = 1+2+4+---+281 4+t = 2%+ ¢ 1 for some positive
integer k. Furthermore, the top p(k) = 2¥ — 1 rows of the n-staircase must be tiled
the same way as the minimal tiling of a p(k)-staircase. Therefore, the horizontal
line between rows p(k) and p(k) + 1 does not pass through any square tiles. Let
us call such a line a fault line. Similarly, the vertical line between columns ¢ and
t + 1 is also a fault line. These two fault lines partition two p(k)-staircases.

ks

p(k)

t p(k)

If these two p(k)-staircases do not overlap, then ¢ = p(k), so n = 2p(k). For
example, the minimal tiling for n = 2p(2) = 6 is shown below.

.

-

Hence, assume that the two p(k)-staircases do overlap. The intersection of the
two p(k)-staircases is a [p(k) — t]-staircase. Since this [p(k) — t]-staircase is tiled
the same way as the top p(k) — ¢t rows of a minimal tiling of a p(k)-staircase,
p(k) —t = p(l) for some positive integer | < k, so t = p(k) — p(l). Then

n=t+p(k) =2p(k) — p(l).

Since p(0) = 0, we can summarize by saying that n must be of the form

n=2p(k) —p(l) = 2" - 2' — 1,
3



where k is a positive integer and [ is a nonnegative integer. Also, our argument
shows how if n is of this form, then an n-staircase can be tiled with n + 1 square
tiles.

Finally, we observe that n is of this form if and only if the binary representation
of n contains exactly one 0:

ok+tl _ ol 1 —-11...1011...1.
kE—11 [1

Let A, B, P be three points on a circle. Prove that if a and b are the distances
from P to the tangents at A and B and c is the distance from P to the chord AB,
then ¢ = ab.

Solution. Let r be the radius of the circle, and let a’ and b’ be the respective
lengths of PA and PB. Since b/ = 2rsin ZPAB = 2rc/d’, ¢ = a't'/(2r). Let AC
be the diameter of the circle and H the foot of the perpendicular from P to AC.
The similarity of the triangles ACP and APH imply that AH : AP = AP : AC
or (a’')* = 2ra. Similarly, (V')> = 2rb. Hence

o _ (a)? (V)
= =ab
¢ 2r  2r ¢
as desired. 0

Alternate Solution. Let E, F,G be the feet of the perpendiculars to the
tangents at A and B and the chord AB, respectively. We need to show that
PFE : PG = PG : GF, where G is the foot of the perpendicular from P to AB.
This suggest that we try to prove that the triangles PG and GPF are similar.

Since PG is parallel to the bisector of the angle between the two tangents,
LEPG = ZFPG. Since AEPG and BF PG are concyclic quadrilaterals (having
opposite angles right), /PGE = Z/PAE and /PFG = /ZPBG. But ZPAE =
/PBA = /PBG, whence /PGFE = ZPFG. Therefore triangles EPG and GPF
are similar.

The argument above with concyclic quadrilaterals only works when P lies on
the shorter arc between A and B. The other case can be proved similarly. 0

Three speed skaters have a friendly race on a skating oval. They all start from
the same point and skate in the same direction, but with different speeds that
they maintain throughout the race. The slowest skater does 1 lap a minute, the
fastest one does 3.14 laps a minute, and the middle one does L laps a minute for
some 1 < L < 3.14. The race ends at the moment when all three skaters again

come together to the same point on the oval (which may differ from the starting
4



point.) Find how many different choices for L are there such that 117 passings
occur before the end of the race. (A passing is defined when one skater passes
another one. The beginning and the end of the race when all three skaters are at
together are not counted as a passing.)

Solution. Assume that the length of the oval is one unit. Let x(¢) be the
difference of distances that the slowest and the fastest skaters have skated by time
t. Similarly, let y(t) be the difference between the middle skater and the slowest
skater. The path (z(t),y(t)) is a straight ray R in R?, starting from the origin,
with slope depending on L. By assumption, 0 < y(t) < z(t).

One skater passes another one when either z(t) € Z, y(t) € Z or x(t) —y(t) € Z.
The race ends when both x(t),y(t) € Z.

Let (a,b) € Z? be the endpoint of the ray R. We need to find the number of
such points satisfying:

(a) 0<b<a
(b) The ray R intersects Z? at endpoints only.
(c) The ray R crosses 357 times the lines x € Z, y € Z, y — x € Z.

The second condition says that a and b are relatively prime. The ray R crosses
a—1 of the lines x € Z, b— 1 of the lines y € Z and a —b—1 of the lines z —y € Z.
Thus, we need (a — 1)+ (b—1)+ (a —b—1) = 117, or equivalently, 2a — 3 = 117.
That is a = 60.

Now b must be a positive integer less than and relatively prime to 60. The
number of such b can be found using the Euler’s ¢ function:

#(60) = p(2*-3-5)=(2—1)-2-(3—1)- (5 —1) = 16.
Thus the answer is 16. O

Alternate Solution. First, let us name our skaters. From fastest to slowest,
call them: A, B and C. (Abel, Bernoulli and Cayley?)

Now, it is helpful to consider the race from the viewpoint of C'. Relative to C,
both A and B complete a whole number of laps, since they both start and finish
at C.

Let n be the number of laps completed by A relative to C', and let m be the
number of laps completed by B relative to C'. Note that: n > m € Z*

Consider the number of minutes required to complete the race. Relative to C,
A is moving with a speed of 3.14 — 1 = 2.14 laps per minute and completes the
race in 5; minutes. Also relative to C', B is moving with a speed of (L — 1) laps
per minute and completes the race in 77 minutes. Since A and B finish the race

together (when they both meet C):

n m m

LN L:2.14(—> 1.

214 L-1 n +

Hence, there is a one-to-one relation between values of L and values of the postive

proper fraction . The fraction should be reduced, that is the pair (m,n) should
5



be relatively prime, or else, with k& = ged(m, n), the race ends after n/k laps for
A and m/k laps for B when they first meet C' together.

It is also helpful to consider the race from the viewpoint of B. In this frame
of reference, A completes only n — m laps. Hence A passes B only (n —m) — 1
times, since the racers do not "pass” at the end of the race (nor at the beginning).
Similarily A passes C' only n — 1 times and B passes C' only m — 1 times. The
total number of passings is:

1M7=mn-1)+m-1)+(n—-—m-1)=2n—-3 = n=060

Hence the number of values of L equals the number of m for which the fraction £ is
positive, proper and reduced. That is the number of positive integer values smaller
than and relatively prime to 60. One could simply count: {1,7,11,13,17,...}, but

Euler’s ¢ function gives this number:
#(60) = p(22-3-5)=(2—-1)-2-(3—-1)-(5—1) = 16.

Therefore, there are 16 values for L which give the desired number of passings.
Note that the actual values for the speeds of A and C' do not affect the result.

They could be any values, rational or irrational, just so long as they are different,

and there will be 16 possible values for the speed of B between them. O

Each vertex of a finite graph can be colored either black or white. Initially all
vertices are black. We are allowed to pick a vertex P and change the color of P
and all of its neighbours. Is it possible to change the colour of every vertex from
black to white by a sequence of operations of this type?

Solution. The answer is yes. Proof by induction on the number n of vertices.
If n = 1, this is obvious. For the induction assumption, suppose we can do this for
any graph with n — 1 vertices for some n > 2 and let X be a graph with n vertices
which we will denote by Py, ..., Ppi1.

Let us denote the “basic” operation of changing the color of P; and all of its
neighbours by f;. Removing a vertex P; from X (along with all edges connecting
to P;) and applying the induction assumption to the resulting smaller graph, we
see that there exists a sequence of operations g; (obtained by composing some f;,
with j # ¢) which changes the colour of every vertex in X, except for possibly F;.

If g; it also changes the color of P; then we are done. So, we may assume that
g; does not change the colour of P for every ¢ = 1,...,n. Now consider two cases.

Case 1: n is even. Then composing g, . .., g, we will change the color of every
vertex from white to black.

Case 2: n is odd. I claim that in this case X has a vertex with an even number
of neighbours.

Indeed, denote the number of neighbours of P; (or equivalently, the number of
edges connected to P) by k;. Then P, + .-+ + P,y; = 2e, where e is the number

of edges of X. Thus one of the numbers k; has to be even as claimed.
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After renumbering the vertices, we may assume that P; has 2k neighbours, say
Py, ..., Poyy1. The composition of f; with gq,¢9,..., gorr1 Will then change the
colour of every vertex, as desired.

0

Let P(z) and Q(z) be polynomials with integer coefficients. Let a, = n! + n.
Show that if P(a,)/Q(ay) is an integer for every n, then P(n)/Q(n) is an integer
for every integer n such that Q(n) # 0.

Solution. Imagine dividing P(x) by Q(x). We find that

P(x) R(x)
aw ~ M quy
where A(x) and R(z) are polynomials with rational coefficients, and R(x) is either
identically O or has degree less than the degree of Q(z).
By bringing the coefficients of A(x) to their least common multiple, we can find
a polynomial B(z) with integer coefficients, and a positive integer b, such that
A(x) = B(x)/b. Suppose first that R(z) is not identically 0. Note that for any
integer k, either A(k) = 0, or |A(k)| > 1/b. But whenever |k| is large enough,
0 < |R(k)/Q(k)| < 1/b, and therefore if n is large enough, P(a,)/Q(a,) cannot
be an integer.
So R(z) is identically 0, and P(z)/Q(x) = B(z)/b (at least whenever Q(z) # 0.)
Now let n be an integer. Then there are infinitely many integers k such that
n = a, (mod b). But B(ax)/b is an integer, or equivalently b divides B(ag). It
follows that b divides B(n), and therefore P(n)/Q(n) is an integer. O






