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The Canadian Mathematical Olympiad (CMO) is an annual national mathematics competition sponsored 
by the Canadian Mathematical Society (CMS) and is administered by the Canadian Mathematical 
Olympiad Committee (CMO Committee), a sub-committee of the Mathematical Competitions Committee. 
The CMO was established in 1969 to provide an opportunity for students who performed well in various 
provincial mathematics competitions to compete at a national level. It also serves as preparation for those 
Canadian students competing at the International Mathematical Olympiad (IMO). 

Students qualify to write the CMO by earning a sufficiently high score on the Canadian Open Mathematical 
Challenge (COMC). Students may also be nominated to write the CMO by a provincial coordinator. 

The Society is grateful for support from the Sun Life Assurance Company of Canada as the Major 
Sponsor of the 2006 Canadian Mathematical Olympiad and the other sponsors which include: the Ministry 
of Education of Ontario; the Ministry of Education of Quebec; Alberta Learning; the Department of 
Education, New Brunswick; the Department of Education, Newfoundland and Labrador; the Department 
of Education, the Northwest Territories; the Department of Education of Saskatchewan; the Department 
of Mathematics and Statistics, University of New Brunswick at Fredericton; the Centre for Education 
in Mathematics and Computing, University of Waterloo; the Department of Mathematics and Statistics, 
University of Ottawa; the Department of Mathematics, University of Toronto; the Department of 
Mathematics, University of British Columbia; Nelson Thompson Learning; John Wiley and Sons Canada 
Ltd.; A.K. Peters and Maplesoft. 

My thanks go to Robert Bilinski of the Collège Montmorency for nominating students from the Province 
of Québec for the CMO, Peter Minev of the University of Alberta for nominating students form the 
Province of Alberta and to Rob Craigen of the University of Manitoba for checking for eligible students 
in his province.

I am very grateful to the CMO Committee members who helped compose and/or mark the examination: 
Robert Barrington Leigh (University of Toronto), Man-Duen Choi (University of Toronto), Chris Fisher 
(University of Regina), Richard Hoshino (Dalhousie University), Roger Mong (University of Toronto), 
Igor Poliakov (York University), Felix Recio (University of Toronto), Naoki Sato (San Diego, CA), 
Jacob Tsimerman (University of Toronto), Terry Visentin (University of Winnipeg) and Ed Wang (Wilfrid 
Laurier University). Thanks to Tom Griffiths of London, ON for serving as validator and to Joseph Khoury 
for translating the paper into French. I acknowledge the support of the CMO Competitions Committee 
chaired by George Bluman (University of British Columbia), and am indebted for the hard work done at 
CMS headquarters by Nathalie Blanchard and the Executive Director, Graham Wright, whose continued 
commitment is a vital ingredient of the success of the CMO.

Ed Barbeau, Chair 
Canadian Mathematical Olympiad Committee 
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The 38th (2006) Canadian Mathematical Olympiad was held on Wednesday, March 29, 2006. A total of 
79 students from 55 schools (52 in Canada, two in the US and one in Singapore) wrote the paper; eight 
Canadian provinces were represented. The number of contestants from each province was as follows: 

BC(14)  AB(8)  SK(1)  MB(1)  ON(40)  QC(6)  NB(2) NS(1) 

The 2006 CMO consisted of five questions, and the maximum score was 33. The contestants were grouped 
into four divisions according to their scores as follows: 

Division  Range of Scores  No. of Students 
 I  18 < m < 28   8 
 II  14 < m < 17   16 
 III  9 < m < 13   21 
 IV  1 < m < 8   34 

FIRST PRIZE — Sun Life Financial Cup — $2000

Dong Uk (David) Rhee
McNally School, Edmonton, Alberta

SECOND PRIZE — $1500
Yufei Zhao

Don Mills Collegiate Institute

THIRD PRIZE — $1000
Shawn Eastwood

Canadian International School

HONOURABLE MENTIONS — $500

Alan Guo
O’Neill Collegiate and Vocational Institute

Oshawa, ON

Kent Huynh
University of Toronto Schools

Toronto, ON

Viktoriya Krakovna
Vaughan Road Academy

Toronto, ON

Alex Remerov
Waterloo Collegiate Institute

Waterloo, ON

Thomas Tang
A.Y. Jackson Secondary School

North York, ON
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Division 2
14 < m < 17

Farzin Barekat Sutherland Secondary School BC
Dimitri Dziabenko Don Mills Collegiate Institute ON
Xiaoshi Huang Sir Winston Churchill High School AB
Lei Jia Waterloo Collegiate Institute ON
Steven Karp Lord Byng Secondary School BC
Adrian Keet Westmount Charter School AB
Andy Kong Vincent Massey Secondary School ON
William Ma Waterloo Collegiate Institute ON
Johnson Mo St. John’s School BC
Jeffrey Mo William Aberhart High School AB
Jennifer Park Bluevale Collegiate Institute ON
Yongho Park Richmond Hill High School ON
Richard Peng Vaughan Road Academy ON
Chen Sun Tom Griffiths Home School ON
Alex Wice Leaside High School ON
Alex Xu Indus Center for Academic Excellence MI

Division 3
9 < m < 13

Nicolas Berube College de Bois-de-Boulogne QC
Boris Braverman Sir Winston Churchill High School AB
Lin Fei Don Mills Collegiate Institute ON
Ioan Filip Marianopolis College QC
William (Jiening) Fu A.Y. Jackson Secondary School ON
Jimmy He Seaquam Secondary School BC
Jiayang Jiang A.Y. Jackson Secondary School ON
Fang Lu Glebe Collegiate Institute ON
Frank Meng Burnaby South Secondary School BC
Clare Park St. Theresa of Lisieux Collegiate H.S. ON
Luke Schaeffer Centennial C. & V. I. ON
Jonathan Schneider University of Toronto Schools ON
Peng Shi Sir John A. Macdonald Collegiate Institute ON 
Tony Wan Stephen Leacock Collegiate Institute ON
Ze Wang Colonel By Secondary School ON
Chen Xi Harry Ainly High School AB
Bobby Xiao Walter Murray Collegiate Institute SK
Hao Yan Jarvis Collegiate Institute ON
Yiyi Yang Western Canada High School AB
Allen Zhang St. George’s School BC
John Zhou Indus Center for Academic Excellence MI

Division 4
1 < m < 8

Sunil Agarwal Indus Center for Academic Excellence MI
Vivek Behera Indus Center for Academic Excellence MI
Eunse Chang Don Mills Collegiate Institute ON
Harry Chang A.B. Lucas Secondary School ON
Derek Chiu Crescent School ON
Bo Hong Deng Jarvis Collegiate Institute ON
Julia Evans John Abbott College  QC
Joe Kileel Fredericton High School NB
Ben Krause St. George’s School BC
Michael Lee The Woodlands School ON
Robert Legassicke Dover Bay Secondary School BC
Stanley Lei York Mills Collegiate Institute ON
Scott (Yi-Heng) Lin Moscrop Secondary School BC
Sunny Liu Sir Winston Churchill Secondary School BC
Ethan Macaulay The Halifax Grammar School NS
Yale Mao The Woodlands School ON
P Alexandre Menard College de Bois-de-Boulogne QC
Yuchen Mu St. John’s-Ravenscourt School MB
Jeremy Pham The Advance Academy of Georgia ON
Silviu Pitis Don Mills Collegiate Institute ON
Bruno Savard Cegep St-Jean-sur-Richelieu QC
Danny Shi Windermere Secondary School BC
Sarah Sun Holy Trinity Academy AB
Peter Sun Sir Winston Churchill Secondary School BC
Shirley Wu Sir John A. Macdonald Collegiate Institute ON
Lei Wu Vincent Massey Secondary School ON
Thomas Wu Sir Winston Churchill Secondary School BC
Kevin Xiong Don Mills Collegiate Institute ON
Vick Yao Vincent Massey Secondary School ON
Wei Zhong Ye Fredericton High School NB
Alan Ye University Hill Secondary School BC
Boyang Zhang The Woodlands School ON
Qiyu Zhu A.Y. Jackson Secondary School ON
Chenglong Zou John Abbott College  QC
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38th Canadian Mathematical Olympiad

Wednesday, March 29, 2006

1. Let f(n, k) be the number of ways of distributing k candies to n children so that each child receives at
most 2 candies. For example, if n = 3, then f(3, 7) = 0, f(3, 6) = 1 and f(3, 4) = 6.

Determine the value of

f(2006, 1) + f(2006, 4) + f(2006, 7) + · · · + f(2006, 1000) + f(2006, 1003) .

2. Let ABC be an acute-angled triangle. Inscribe a rectangle DEFG in this triangle so that D is on
AB, E is on AC and both F and G are on BC. Describe the locus of (i.e., the curve occupied by) the
intersections of the diagonals of all possible rectangles DEFG.

3. In a rectangular array of nonnegative real numbers with m rows and n columns, each row and each
column contains at least one positive element. Moreover, if a row and a column intersect in a positive
element, then the sums of their elements are the same. Prove that m = n.

4. Consider a round-robin tournament with 2n + 1 teams, where each team plays each other team exactly
once. We say that three teams X, Y and Z, form a cycle triplet if X beats Y , Y beats Z, and Z beats X.
There are no ties.

(a) Determine the minimum number of cycle triplets possible.

(b) Determine the maximum number of cycle triplets possible.

5. The vertices of a right triangle ABC inscribed in a circle divide the circumference into three arcs. The
right angle is at A, so that the opposite arc BC is a semicircle while arc AB and arc AC are supplementary.
To each of the three arcs, we draw a tangent such that its point of tangency is the midpoint of that portion
of the tangent intercepted by the extended lines AB and AC. More precisely, the point D on arc BC is
the midpoint of the segment joining the points D′ and D′′ where the tangent at D intersects the extended
lines AB and AC. Similarly for E on arc AC and F on arc AB.

Prove that triangle DEF is equilateral.
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38th Canadian Mathematical Olympiad

Wednesday, March 29, 2006

Solutions to the 2006 CMO paper

1. Let f(n, k) be the number of ways of distributing k candies to n children so that each child receives
at most 2 candies. For example, if n = 3, then f(3, 7) = 0, f(3, 6) = 1 and f(3, 4) = 6.

Determine the value of

f(2006, 1) + f(2006, 4) + f(2006, 7) + · · · + f(2006, 1000) + f(2006, 1003) .

Comment. Unfortunately, there was an error in the statement of this problem. It was intended that the
sum should continue to f(2006, 4012).

Solution 1. The number of ways of distributing k candies to 2006 children is equal to the number of ways
of distributing 0 to a particular child and k to the rest, plus the number of ways of distributing 1 to the
particular child and k − 1 to the rest, plus the number of ways of distributing 2 to the particular child and
k − 2 to the rest. Thus f(2006, k) = f(2005, k) + f(2005, k − 1) + f(2005, k − 2), so that the required sum is

1 +
1003∑
k=1

f(2005, k) .

In evaluating f(n, k), suppose that there are r children who receive 2 candies; these r children can be chosen
in

(
n
r

)
ways. Then there are k− 2r candies from which at most one is given to each of n− r children. Hence

f(n, k) =
�k/2�∑
r=0

(
n

r

)(
n − r

k − 2r

)
=

∞∑
r=0

(
n

r

)(
n − r

k − 2r

)
,

with
(
x
y

)
= 0 when x < y and when y < 0. The answer is

1003∑
k=0

∞∑
r=0

(
2005

r

)(
2005 − r

k − 2r

)
=

∞∑
r=0

(
2005

r

) 1003∑
k=0

(
2005 − r

k − 2r

)
.

Solution 2. The desired number is the sum of the coefficients of the terms of degree not exceeding 1003
in the expansion of (1 + x + x2)2005, which is equal to the coefficient of x1003 in the expansion of

(1 + x + x2)2005(1 + x + · · · + x1003) = [(1 − x3)2005(1 − x)−2005](1 − x1004)(1 − x)−1

= (1 − x3)2005(1 − x)−2006 − (1 − x3)2005(1 − x)−2006x1004 .

Since the degree of every term in the expansion of the second member on the right exceeds 1003, we are
looking for the coefficient of x1003 in the expansion of the first member:

(1 − x3)2005(1 − x)−2006 =
2005∑
i=0

(−1)i

(
2005

i

)
x3i

∞∑
j=0

(−1)j

(−2006
j

)
xj
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=
2005∑
i=0

∞∑
j=0

(−1)i

(
2005

i

)(
2005 + j

j

)
x3i+j

=
∞∑

k=0

( 2005∑
i=1

(−1)i

(
2005

i

)(
2005 + k − 3i

2005

))
xk .

The desired number is

334∑
i=1

(−1)i

(
2005

i

)(
3008 − 3i

2005

)
=

334∑
i=1

(−1)i (3008 − 3i)!
i!(2005 − i)!(1003 − 3i)!

.

(Note that
(
3008−3i

2005

)
= 0 when i ≥ 335.)

2. Let ABC be an acute-angled triangle. Inscribe a rectangle DEFG in this triangle so that D is on
AB, E is on AC and both F and G are on BC. Describe the locus of (i.e., the curve occupied by) the
intersections of the diagonals of all possible rectangles DEFG.

Solution. The locus is the line segment joining the midpoint M of BC to the midpoint K of the altitude
AH. Note that a segment DE with D on AB and E on AC determines an inscribed rectangle; the midpoint
F of DE lies on the median AM , while the midpoint of the perpendicular from F to BC is the centre of
the rectangle. This lies on the median MK of the triangle AMH.

Conversely, any point P on MK is the centre of a rectangle with base along BC whose height is double
the distance from K to BC.

3. In a rectangular array of nonnegative real numbers with m rows and n columns, each row and each
column contains at least one positive element. Moreover, if a row and a column intersect in a positive
element, then the sums of their elements are the same. Prove that m = n.

Solution 1. Consider first the case where all the rows have the same positive sum s; this covers the
particular situation in which m = 1. Then each column, sharing a positive element with some row, must
also have the sum s. Then the sum of all the entries in the matrix is ms = ns, whence m = n.

We prove the general case by induction on m. The case m = 1 is already covered. Suppose that we have
an m × n array not all of whose rows have the same sum. Let r < m of the rows have the sum s, and each
of the of the other rows have a different sum. Then every column sharing a positive entry with one of these
rows must also have sum s, and these are the only columns with the sum s. Suppose there are c columns
with sum s. The situation is essentially unchanged if we permute the rows and then the column so that the
first r rows have the sum s and the first c columns have the sum s. Since all the entries of the first r rows
not in the first c columns and in the first c columns not in the first r rows must be 0, we can partition the
array into a r × c array in which all rows and columns have sum s and which satisfies the hypothesis of the
problem, two rectangular arrays of zeros in the upper right and lower left and a rectangular (m− r)× (n− c)
array in the lower right that satisfies the conditions of the problem. By the induction hypothesis, we see
that r = c and so m = n.

Solution 2. [Y. Zhao] Let the term in the ith row and the jth column of the array be denoted by aij ,
and let S = {(i, j) : aij > 0}. Suppose that ri is the sum of the ith row and cj the sum of the jth column.
Then ri = cj whenever (i, j) ∈ S. Then we have that

∑
{aij

ri
: (i, j) ∈ S} =

∑
{aij

cj
: (i, j) ∈ S} .

We evaluate the sums on either side independently.

∑
{aij

ri
: (i, j) ∈ S} =

∑
{aij

ri
: 1 ≤ i ≤ m, 1 ≤ j ≤ n} =

m∑
i=1

1
ri

n∑
j=1

aij =
m∑

i=1

(
1
ri

)
ri =

m∑
i=1

1 = m .

∑
{aij

cj
: (i, j) ∈ S} =

∑
{aij

cj
: 1 ≤ i ≤ m, 1 ≤ j ≤ n} =

n∑
j=1

1
cj

m∑
i=1

aij =
n∑

j=1

(
1
cj

)
cj =

n∑
j=1

1 = n .
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Hence m = n.

Comment. The second solution can be made cleaner and more elegant by defining uij = aij/ri for all
(i, j). When aij = 0, then uij = 0. When aij > 0, then, by hypothesis, uij = aij/cj , a relation that in fact
holds for all (i, j). We find that

n∑
j=1

uij = 1 and
n∑

i=1

uij = 1

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, so that (uij) is an m×n array whose row sums and column sums are all equal
to 1. Hence

m =
m∑

i=1

( n∑
j=1

uij

)
=

∑
{uij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} =

n∑
j=1

( m∑
i=1

uij

)
= n

(being the sum of all the entries in the array).

4. Consider a round-robin tournament with 2n+1 teams, where each team plays each other team exactly
once. We say that three teams X, Y and Z, form a cycle triplet if X beats Y , Y beats Z, and Z beats X.
There are no ties.

(a) Determine the minimum number of cycle triplets possible.

(b) Determine the maximum number of cycle triplets possible.

Solution 1. (a) The minimum is 0, which is achieved by a tournament in which team Ti beats Tj if and
only if i > j.

(b) Any set of three teams constitutes either a cycle triplet or a “dominated triplet” in which one team
beats the other two; let there be c of the former and d of the latter. Then c + d =

(
2n+1

3

)
. Suppose that

team Ti beats xi other teams; then it is the winning team in exactly
(
xi

2

)
dominated triples. Observe that∑2n+1

i=1 xi =
(
2n+1

2

)
, the total number of games. Hence

d =
2n+1∑
i=1

(
xi

2

)
=

1
2

2n+1∑
i=1

xi2 − 1
2

(
2n + 1

2

)
.

By the Cauchy-Schwarz Inequality, (2n + 1)
∑2n+1

i=1 xi2 ≥ (
∑2n+1

i=1 xi)2 = n2(2n + 1)2, whence

c =
(

2n + 1
3

)
−

2n+1∑
i=1

(
xi

2

)
≤

(
2n + 1

3

)
− n2(2n + 1)

2
+

1
2

(
2n + 1

2

)
=

n(n + 1)(2n + 1)
6

.

To realize the upper bound, let the teams be T1 = T2n+2, T2 = T2n+3. · · ·, Ti = T2n+1+i, · · ·, T2n+1 =
T4n+2. For each i, let team Ti beat Ti+1, Ti+2, · · · , Ti+n and lose to Ti+n+1, · · · , Ti+2n. We need to check
that this is a consistent assignment of wins and losses, since the result for each pair of teams is defined twice.
This can be seen by noting that (2n + 1 + i) − (i + j) = 2n + 1 − j ≥ n + 1 for 1 ≤ j ≤ n . The cycle
triplets are (Ti, Ti+j , Ti+j+k) where 1 ≤ j ≤ n and (2n + 1 + i) − (i + j + k) ≤ n, i.e., when 1 ≤ j ≤ n and
n + 1 − j ≤ k ≤ n. For each i, this counts 1 + 2 + · · · + n = 1

2n(n + 1) cycle triplets. When we range over
all i, each cycle triplet gets counted three times, so the number of cycle triplets is

2n + 1
3

(
n(n + 1)

2

)
=

n(n + 1)(2n + 1)
6

.

Solution 2. [S. Eastwood] (b) Let t be the number of cycle triplets and u be the number of ordered triplets
of teams (X,Y, Z) where X beats Y and Y beats Z. Each cycle triplet generates three ordered triplets while
other triplets generate exactly one. The total number of triplets is(

2n + 1
3

)
=

n(4n2 − 1)
3

.

The number of triples that are not cycle is

n(4n2 − 1)
3

− t .
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Hence

u = 3t +
(

n(4n2 − 1)
3

− t

)
=⇒

t =
3u − n(4n2 − 1)

6
=

u − (2n + 1)n2
2

+
n(n + 1)(2n + 1)

6
.

If team Y beats a teams and loses to b teams, then the number of ordered triples with Y as the central
element is ab. Since a + b = 2n, by the Arithmetic-Geometric Means Inequality, we have that ab ≤ n2.
Hence u ≤ (2n + 1)n2, so that

t ≤ n(n + 1)(2n + 1)
6

.

The maximum is attainable when u = (2n+1)n2, which can occur when we arrange all the teams in a circle
with each team beating exactly the n teams in the clockwise direction.

Comment. Interestingly enough, the maximum is
∑n

i=1 i2; is there a nice argument that gives the answer
in this form?

5. The vertices of a right triangle ABC inscribed in a circle divide the circumference into three arcs. The
right angle is at A, so that the opposite arc BC is a semicircle while arc AB and arc AC are supplementary.
To each of the three arcs, we draw a tangent such that its point of tangency is the midpoint of that portion
of the tangent intercepted by the extended lines AB and AC. More precisely, the point D on arc BC is the
midpoint of the segment joining the points D′ and D′′ where the tangent at D intersects the extended lines
AB and AC. Similarly for E on arc AC and F on arc AB.

Prove that triangle DEF is equilateral.

Solution 1. A prime indicates where a tangent meets AB and a double prime where it meets AC. It is
given that DD′ = DD′′, EE′ = EE′′ and FF ′ = FF ′′. It is required to show that arc EF is a third of the
circumference as is arc DBF .

AF is the median to the hypotenuse of right triangle AF ′F ′′, so that FF ′ = FA and therefore

arc AF = 2∠F ′′FA = 2(∠FF ′A + ∠FAF ′) = 4∠FAF ′ = 4∠FAB = 2 arc BF ,

whence arc FA = (2/3) arc BFA. Similarly, arc AE = (2/3) arc AEC. Therefore, arc FE is 2/3 of the
semicircle, or 1/3 of the circumference as desired.

As for arc DBF , arc BD = 2∠BAD = ∠BAD + ∠BD′D = ∠ADD′′ = (1/2) arc ACD. But, arc BF =
(1/2) arc AF , so arc DBF = (1/2) arc FAED. That is, arc DBF is 1/3 the circumference and the proof
is complete.

Solution 2. Since AE′E′′ is a right triangle, AE = EE′ = EE′′ so that ∠CAE = ∠CE′′E. Also
AD = D′D = DD′′, so that ∠CDD′′ = ∠CAD = ∠CD′′D. As EADC is a concyclic quadrilateral,

180◦ = ∠EAD + ∠ECD

= ∠DAC + ∠CAE + ∠ECA + ∠ACD

= ∠DAC + ∠CAE + ∠CEE′′ + ∠CE′′E + ∠CDD′′ + ∠CD′′D
= ∠DAC + ∠CAE + ∠CAE + ∠CAE + ∠CAD + ∠CAD

= 3(∠DAC + ∠DAE) = 3(∠DAE)

Hence ∠DFE = ∠DAE = 60◦. Similarly, ∠DEF = 60◦. It follows that triangle DEF is equilateral.
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GRADERS’ REPORT

The grading committee consisted of Ed Barbeau, Robert Barrington Leigh, Man-Duen Choi, Felix Recio,
Jacob Tsimerman and Ed Wang. Each question was graded by two people, and in the case of the papers in
the top quartile, the grade was verified by a third. The top papers were considered by the committee as a
whole to agree on the ranking.

Astonishingly and unfortunately, there was an error in the first problem that did not get detected by
any member of the committee or the validator. One can only speculate on the group psychological effect at
work. The chairman deeply regrets this occurrence. Accordingly, this question was essentially marked out
of 5 for a careful explanation leading to a well-posed sum, with 6 being given to one student who produced
a particularly fine solution. The remaining questions were marked out of 7. In the ranking, the top papers
were considered both with and without question 1. Fortunately, there was no difference with the top three
papers, and there was a shuffling of the honorable mentions.

81 students were registered to write the Canadian Mathematical Olympiad. Two failed to submit papers;
one student was abroad, and was too engaged to make the attempt; the second wrote the paper on the same
day as another examination and chose not to submit it.

The marks award for the several problems are given in the following table:

Marks #1 #2 #3 #4 #5
7 0 31 5 2 8
6 1 11 1 0 0
5 8 5 1 0 1
4 3 1 2 2 1
3 13 3 5 13 1
2 16 12 9 41 2
1 21 4 15 1 3
0 5 8 27 7 25
– 12 4 14 13 38

Problem 1. Students could gain 2 marks for obtaining, with justification, the correct number of ways
of distributing 1 and 4 candies. For 5 points, students had to give a correct sum, either in closed form with
the limits of summation clearly delineated or in extensive form, along with a description of the reasoning.
Many students gave an answer without anything in the way of justification, and quite a few did not keep the
indices straight. This question points up the need for competitors to justify the expressions they put down
and to give as much of the solution as they can, even if they cannot, or think that they cannot, complete
the problem. Credit was given for recognizing the relation

f(2006, k) = f(2005, k) + f(2005, k − 1) + f(2005, k − 2)

which was an important ingredient in the intended problem, and a tool for simplifying the expression in this
one.

2. For most students, this was the most straightforward question on the paper, and the method of choice
was analytic geometry. However, many solutions were hardly fluent in this technique, and some had solutions
with excessive use of subscripts. Many students were not careful about indicating which part of the straight
line was actually the locus.

3. While many students had a rough idea of what was at stake, they quickly got bogged down. Many
started out with a positive entry in, say, a row, then looked at the columns involved, and then the rows
involved with these columns, and so on, entering into a spiral of consequences that they could not control.
The way around this is to try to define at the beginning the end result of this spiralling situation, either
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by considering the set of all rows and columns that share a particular sum, or, in the case of one student,
considering a minimum block of entries of the array which contained along with each nonzero entry, all the
nonzero entries belong to the same row or column. This then set up the basis for an induction argument.

Several students began their solutions with faulty assumptions, for example that one could rearrange
rows and columns to achieve a situation in which, in the case m < n, there was a m × m submatrix with a
diagonal of nonzero entries with the remaining entries zero. However, the very elegant argument (Solution
2) by Yufei Zhao cuts through any need for complicated reasoning and possible confusion, and should be
studied by students for possible use elsewhere.

4. Many students got the easy (a) part of the problem, for which 2 points were awarded, but very few
proceeded any further. However, a few solutions to (b) were quite elegant and succeeded by making a count
of cycle and non-cycle triplets as in the official solutions. Some tried an induction argument, but got fouled
up when they added an additional pair of teams; no one succeeded with this approach.

5. This problem was better done than anticipated, with many students relating angles in a circle sub-
tended by the same chord, identifying the exterior angle of a triangle with the sum of the interior and opposite
triangles, and equating the angle between tangent and chord with the angle subtended by the chord. Some
students overdid the symmetry. While the argument showing that angle DEF was equal to 60 degrees was
analogous to that for angle DFE, angle EDF needed a separate treatment. A few students were mislead by
the diagram and took BC to be parallel to D′D′′ or assumed some other fact that depended on triangle
ABC being isosceles.


