BRIAN COOK, University of British Columbia "Constellations in P^{d} "

Abstract: A constellation is a higher dimensional analogue of an arithmetic progression, namely something of the shape $\{\mathbf{x}, \mathbf{x} + t\mathbf{e_1}, ..., \mathbf{x} + t\mathbf{e_d}\} \in \mathbb{Z}^d$, where $t \in \mathbb{Z}$ and $\mathbf{x}, \mathbf{e_1}, ..., \mathbf{e_d} \in \mathbb{Z}^d$. We discuss finding such patterns lying inside a relatively dense subsets of P^d , where P denotes the set of primes. While the case for general sets of $\{\mathbf{e_j}\}$ remains open, if the i^{th} coordinate of the $\mathbf{e_j}$ is distinct in j for each i, the existence of infinitely many constellations of this shape is shown. This is joint work with Ákos Magyar.