SHELLY BOUCHAT, Slippery Rock University

The Betti Numbers on the Linear Strand and a Bound on the Regularity for Path Ideals of Rooted Trees

Let $\Gamma = (V, E)$ be a finite, simple graph having vertex set $V = \{x_1, \ldots, x_n\}$ and edge set E. Furthermore, let k be a field and identify V with the variables in the polynomial ring $S := k[x_1, \ldots, x_n]$. Associated to Γ is the edge ideal $I_{\Gamma} \subset S$ where the minimal generating set of I_{Γ} corresponds to the edge set, E, of Γ . Since an edge can be viewed as a path of length 1, the notion of an edge ideal can be generalized to that of a path ideal. Given a positive integer t, we let $I_t(\Gamma) \subset S$ be the ideal whose minimal generating set corresponds to the length t-1 paths in Γ . In this talk, we will consider the situation where Γ is a directed, rooted tree on a finite vertex set. For this case, we provide an explicit formula for the Betti numbers occurring on the linear strand of $S/I_t(\Gamma)$ for $t \ge 2$ as well as provide a bound for the Castelnuovo-Mumford regularity of $S/I_t(\Gamma)$ for $t \ge 2$.