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JONATHAN BORWEIN, University of Newcastle, NSW
Why Convex?

This lecture makes the case for the study of convex functions focussing on their structural properties. We highlight the
centrality of convexity and give a selection of salient examples and applications.

It has been said that most of number theory devolves to the Cauchy–Schwarz inequality and the only problem is deciding ‘what
to Cauchy with’. In like fashion, much mathematics is tamed once one has found the right convex ‘Green’s function’. Why
convex? Well, because. . .
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ANTHONY TO-MING LAU, Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton,
Alberta, T6G 2G1
The Fourier algebra and the group von Neumann algebra

Let R be the group of real numbers with addition and the usual topology. Then the Banach algebra L1(R) of integrable
functions with convolution product can be identified via the Fourier transform with the Fourier algebra A(R) which is a dense
subalgebra of the algebra of continuous functions on R vanishing at infinity with pointwise multiplication.

In this talk, I will introduce the Fourier algebra A(G) of a locally compact group G (not necessarily abelian) which is an algebra
of continuous functions on G vanishing at infinity. It can be identified with the predual of the group von Neumann algebra
of G generated by left translations on L2(G). Both the Fourier algebra and the group von Neumann algebra play a central role
in harmonic analysis on non-abelian groups. In this talk, I will discuss the geometry of A(G) and the Fourier Stieltjes algebra
B(G), the associated non-commutative function spaces in the group von Neumann algebra and some open problems.

NAOMI LEONARD, Princeton University, Princeton, NJ, USA
Stability and Robustness of Collective Dynamics

Given the joint challenge to explain the enabling mechanisms of collective behavior in social animal groups and to define
provable mechanisms of collective behavior for networked robotic groups, it is of great value to develop systematic means
to study stability and robustness of collective dynamics for multi-agent systems. When distributed feedback laws used by
individual agents depend only on measurements of relative states of others, the closed-loop dynamics retain a symmetry, and
synchrony measures can be used to parametrize solutions in shape space. I will discuss stability of synchronized behaviors
and robustness of synchrony to input heterogeneity, as a function of the (directed) inter-agent sensing topology. Dispersion,
which measures the distance from synchrony, is examined for networked dynamical systems in the presence of external input
disturbances with bounded L2 norm. Robustness is formalized with an L2 gain condition and the dependence is derived of the
L2 gain on the sensing topology and on properties of the individual agent dynamics. Other robustness measures are considered
for classes of systems.
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NANCY REID, University of Toronto
Likelihood inference in complex models

The likelihood function underpins nearly all statistical inference and modelling, but with very complex models the likelihood
function can be cumbersome or impossible to compute. Various simplifications have been suggested for particular settings,
and recently the method of composite likelihood has been widely used. This method, which uses only lower dimensional
distributions instead of the full joint distribution to construct the model, seems to have good efficiency as well as ease of
calculation. I will discuss some models and applications where various versions of composite likelihood seem to perform well,
with a view to understanding the reasons for this good performance, and also understanding when it may give misleading
results.

CHRISTINE SHOEMAKER, Cornell University, Hollister Hall, Ithaca, NY 14850, USA
Continuous Optimization with Response Surfaces for Computationally Expensive Simulation Models Including Environmental
Applications

This talk will present an overview of algorithms that employ response surfaces to significantly reduce the computational effort
required to solve continuous optimization and uncertainty analysis of nonlinear simulation models that require a substantial
amount of CPU time for each simulation. For nonlinear objective functions and simulation models, the resulting optimization
problem is usually multimodal and hence requires a global optimization method.

In order to reduce the number of simulations required, we are interested in utilizing information from all previous simulations
done as part of an optimization search by building a (radial basis function) multivariate response surface that interpolates these
earlier simulations. I will discuss the alternative approaches of direct global optimization search versus using a multistart method
in combination with a local optimization method. These different approaches will be illustrated by two global optimization
response surface methods to come from our group recently. I will also briefly describe an uncertainty analysis method SOARS
that uses derivative-free optimization to help construct a response surface. This approach has been shown to reduce CPU
requirements to less than 1/65 of what is required by conventional MCMC uncertainty analysis. I will present examples of the
application of these methods to significant environmental problems described by computationally intensive simulation models
used worldwide. One model (MODFLOW/MT3D) involves partial differential equation models for groundwater and the second
is SWAT, which is used to describe potential pollution of NYC’s drinking water. In both cases, the model is applied to data
from a specific site.

DAVID VOGAN, MIT, Cambridge, Massachusetts, USA
Signatures of Hermitian forms and unitary representations

Suppose G is compact Lie group. The representations of G—possible ways of realizing G as group of matrices—provide a
powerful way to organize the investigation of a wide variety of problems involving symmetry under G. For example, if G acts by
isometries on a Riemannian manifold, each eigenspace of the Laplace operator is a representation of G. Knowing the possible
dimensions of representations can therefore tell you about possible multiplicities of Laplacian eigenvalues.

When G is noncompact, there may be no realizations of G using finite matrices, and those involving arbitrary infinite matrices
are too general to be useful. Stone, von Neumann, Wigner, and Gelfand realized in the 1930s that unitary operators on Hilbert
spaces provided a happy medium: that any group could be realized by unitary operators, but that the possible realizations
could still be controlled in interesting examples.

Gelfand’s “unitary dual problem” asks for a list of all the realizations of a given group G as unitary operators. Work of
Harish-Chandra, Langlands, and Knapp–Zuckerman before 1980 produced a slightly longer list: all realizations of G as linear
operators preserving a possibly indefinite Hermitian form. I will describe a notion of “signatures” for such infinite-dimensional
forms, and recent work of Jeff Adams’ research group “Atlas of Lie groups and representations” on an algorithm for calculating
signatures. This algorithm identifies unitary representations among Hermitian ones, and so promises to resolve the unitary dual
problem.
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