LADISLAV STACHO, Simon Fraser University, Burnaby

Ordered k-colorings dichotomy

We introduce three variants of proper colorings with imposed partial ordering on the set of colors and will present dichotomy theorems that separate these problems into *tractable* and *NP-complete*.

Vertices of all considered graphs are integers from 1 to |V(G)|, hence they form a linearly ordered set $(V(G), \leq)$. The set of vertices colored c will be denoted by V_c . Given a partially ordered set (poset) (\mathcal{C}, \preceq) of colors, in the first problem we want to (properly) color vertices of G by colors in \mathcal{C} (color G by poset \mathcal{C}) such that for any two colors c and c' if $c \preceq c'$ then for any two vertices $u \in V_c$ and $v \in V_{c'}$, $u \leq v$. Thus, if \preceq is the empty relation on \mathcal{C} , then the problem is whether G can be properly colored with $|\mathcal{C}|$ colors, a well known graph coloring problem.

In the second problem, we want to color G by poset C such that for any two colors c and c' if $c \leq c'$ then for any two adjacent vertices $u \in V_c$ and $v \in V_{c'}$, $u \leq v$. This problem is the well-known directed graph homomorphism problem whose dichotomy was extensively studied.

In the last problem, we want to color G by poset C such that for any two colors c and c' if $c \leq c'$ then for any two vertices $u \in V_c$ and $v \in V_{c'}$ in a component induced by $V_c \cup V_{c'}$, $u \leq v$.

This is a joint work with Arvind Gupta, Jan van den Heuvel, Jan Manuch, and Xiaohong Zhao.