DAVID PIKE, Memorial University of Newfoundland, St. John's, Newfoundland *Pancyclic PBD block-intersection graphs*

A pairwise balanced design $PBD(v, \mathcal{K}, \lambda)$ consists of a set V of cardinality v, a set \mathcal{K} of positive integers, and a set \mathcal{B} of subsets of V with the properties that $|b| \in \mathcal{K}$ for each $b \in \mathcal{B}$, and each pair of elements from V occurs in exactly λ of the subsets in \mathcal{B} . The elements of \mathcal{B} are known as the blocks of the design.

Given a combinatorial design \mathcal{D} with block set \mathcal{B} , its block-intersection graph $G_{\mathcal{D}}$ is the graph having vertex set \mathcal{B} such that two vertices b_1 and b_2 are adjacent if and only if b_1 and b_2 have non-empty intersection.

Hare showed in 1995 that if \mathcal{D} is a PBD $(v, \mathcal{K}, 1)$ with $\min \mathcal{K} \ge 3$, then $G_{\mathcal{D}}$ is edge-pancyclic (*i.e.*, each edge of $G_{\mathcal{D}}$ is contained in a cycle of each length $\ell = 3, 4, \ldots, |V(G_{\mathcal{D}})|$). In this presentation we consider block-intersection graphs of pairwise balanced designs PBD $(v, \mathcal{K}, \lambda)$ for which $\lambda \ge 2$.

This is joint work with Graham Case.