RAUNO AULASKARI, University of Joensuu, Department of Physics and Mathematics, P.O. Box 111, 80101 Joensuu, Finland

A non- α -normal function whose derivative has finite area integral of order less than $2/\alpha$

Let \mathcal{D} be the unit disk $\{z : |z| < 1\}$ in the complex plane. A function f, meromorphic in \mathcal{D} , is normal, denoted by $f \in N$, if $\sup_{z \in \mathcal{D}} (1 - |z|^2) f^{\#}(z) < \infty$, where $f^{\#}(z) = |f'(z)|/(1 + |f(z)|^2)$. For $\alpha > 1$, a meromorphic function f is called α -normal if $\sup_{z \in \mathcal{D}} (1 - |z|^2)^{\alpha} f^{\#}(z) < \infty$. H. Allen and C. Belna [1] have proved that there is an analytic function f_1 , defined in \mathcal{D} , such that

$$\iint_{\mathcal{D}} |f_1'(z)| \, dx \, dy < \infty$$

but $f_1 \notin N$. S. Yamashita [3] sharpened this result by showing that for another analytic function f_2 which does not belong to N it holds

$$\iint_{\mathcal{D}} |f_2'(z)|^p \, dx \, dy < \infty \tag{1}$$

for all $p, 0 . Further, H. Wulan [2] studied more the function <math>f_2$ and showed that $f_2 \notin \bigcup_{0 but <math>f_2 \in \bigcap_{0 . We construct a class of analytic functions <math>f_s$ which satisfy (1) for $0 but <math>f_s \notin N^{\alpha}$ for $\alpha > 1$. Further, the question if f_s belongs or not to $\bigcup_{0 is considered.$

References

- [1] H. Allen and C. Belna, Non-normal functions f(z) with $\iint_{|z|<1} |f'(z)| dx dy < \infty$. J. Math. Soc. Japan 24(1972), 128–132.
- H. Wulan, A non-normal function related Q_p spaces and its applications. In: Progress in Analysis I, II, World Sci. Publ., River Edge, NJ, 2003, 229–234.
- [3] S. Yamashita, A non-normal function whose derivative has finite area integral of order 0