VITALI FEDORCHUK, Moscow State University, Moscow, Russia Some new applications of resolutions

The method of resolutions was introduced in [1] (see also [2]). This method allows us to construct new spaces using given collections of spaces. Many examples of applications of this method are given in [3]. By applying iterated resolutions and fully closed mappings one can obtain more sophisticated examples [4]. Here we present several new applications of resolutions.

Theorem 1 For any prime p there exists a 2-dimensional homogeneous separable first countable compact space T_p such that $\dim(T_p \times T_q) = 3$ for $p \neq q$.

Question 1 Are there homogeneous metrizable compacta X and Y such that $\dim(X \times Y) < \dim X + \dim Y$?

Recent results by J. L. Bryant [5] imply that if X and Y are homogeneous metrizable ANR-compacta, then

$$\dim(X \times Y) = \dim X + \dim Y \tag{1}$$

Question 2 Does the equality (1) hold if X is a homogeneous ANR-compactum and Y is an arbitrary (homogeneous) metrizable compactum?

Remark 1 As for Question 1, we cannot omit homogeneity of Y, since Pontryagin's surface Π_2 is homogeneous.

Another two results are joint with A. V. Ivanov and J. van Mill.

Theorem 2 (CH; [6]) For every $n \in \mathbb{N}$, there exists a family of separable compacta X_i , $i \in \mathbb{N}$, such that for every non-empty finite subset M of \mathbb{N} and every non-empty closed subset F of $\prod_{i \in M} X_i$ we have $\dim F = k(F)n$, where k(F) is integer such that $k(F) \ge 1$ for infinite F. Moreover, $|F| = 2^c$ for infinite closed F.

Theorem 3 (CH; [6]) There exists an infinite separable compactum X such that for any positive integer m, if F is an infinite closed subset of X^m , then $|F| = 2^c$ and F is strongly infinite-dimensional.

Question 3 Does there exist in ZFC an *n*-dimensional compactum Y_n , $n \ge 2$, such that for every $m \ge 2$, every non-empty closed subset F of Y_n^m has dimension kn, where k is some integer between 0 and m?

Question 4 Does there exist in ZFC an infinite-dimensional compactum Z such that for every non-empty closed subset F of Z^2 we have either dim F = 0 or F is infinite-dimensional?

References

- [1] V. V. Fedorchuk, Bicompacta with non-coinciding dimensionalities. Soviet Math. Dokl. 9(1968), 1148–1150.
- [2] V. V. Fedorchuk and K. P. Hart, *d-23 Special Constructions*. In: Encyclopedia of General Topology (K. P. Hart, J. Nagata and J. E. Vaughan, eds.), Elsevier Science Ltd., 2004, 229–232.
- [3] S. Watson, The construction of topological spaces: planks and resolutions. In: Recent Progress in General Topology (M. Husek and J. van Mill, eds.), North-Holland Publishing Co., Amsterdam, 1992, 673–757.
- [4] V. V. Fedorchuk, Fully closed mappings and their applications. (Russian) Fundament. i Prikl. Matem. (4) 9(2003), 105–235; J. Math. Sci. (New York), to appear.
- [5] J. L. Bryant, Reflections on the Bing-Borsuk conjecture. Preprint, 2003, 1-4.
- [6] V. V. Fedorchuk, A. V. Ivanov and J. van Mill, Intermediate dimensions of products. Topology Appl., submitted.