
Foxxy Knots
by Garret Flowers

A knot is an intruiguing mathematical creature. On an intuitive 
level, we are all familiar with knots, which make their appearances 
in art, history and shoes. However, the formal theory of knots is 
surprisingly complex and lives in harmony between combinatorics, 
algebra, topology and geometry. 

In this field, the questions are often simple 
to state, but difficult to answer. For instance, 
given two knots, how can we tell that they are 
equivalent? That is, can we pull, entangle, and 
manipulate the strands of one knot so that it 
becomes a copy of the second (without break-
ing the strands)? Indeed, how can we tell that a 
knot is ‘knotted’ at all and not just an entangled 
circle? While there has been quite a bit of prog-
ress on both of these questions, a simple and 
elegant solution remains elusive.

Take the knot diagrams of the trefoil and the 
‘unknot’ pictured on the right in Figure 1. It is 
apparent that these two representations of knots 
are not equivalent. But how do we prove this? For 
this, we turn to knot invariants. A knot invariant 
assigns to each knot an object — be it a number, 
group, matrix, fruit or animal. The only condi-
tion is that if two knots are equivalent, then 

both knots must be assigned the same value. 
As 3D rendering software was not available to 
mathematicians in the mid-20th century, knots 
are often represented by a knot diagram. All of 
the knots in this article are represented by knot 

diagrams — a curve on the plane that is broken 
in places where one strand of the knot moves 
beneath the other. Study of the knot diagrams 
is equivalent to the study of the knots them-
selves, although the former has a much nicer 
combinatorial description. In 1926, German 

Notes from the Margin

Figure 1. The two (un)knots on the right are equivalent; 
however, the trefoil knot on the left is not equivalent to the 
unknot.

Photos of knots courtesy of Knotilus (knotilus.math.uwo.ca)

Vo
lu

m
e 

I 
· 

20
11



2

mathematican Kurt Reidemeister developed what 
are now known as the Reidemeister moves: three 
transformations of knot diagrams that preserve 
the structure of the knot. The three moves are 
listed in Figure 2. It is clear that if we apply any 
of these three moves to a knot diagram, then 
the resulting knot is equivalent to the original. 
A powerful theorem of Reidemeister [R] states 
that these are the only three moves necessary to 
connect two equivalent knots. That is, two knots 
are equivalent if and only if a series of Reide-
meister moves can be applied to one diagram to 
obtain a copy of the other diagram. The problem 

is in determining how many moves are needed, 
where they should be applied, and in what order.

But this issue hardly diminishes the power of 
the theorem. From this theorem, it becomes 
possible to construct a multitude of knot invari-
ants. Think of the invariant as a function from 
the space of all knot diagrams to a collection 
of objects, for example, the integers. Then the 
invariant must assign to equivalent diagrams the 
same integer. Since two equivalent diagrams can 
always be connected by these three Reidemeister 
moves, it becomes sufficient to show that the 
invariant is unaffected by applying any of these 
three moves to a knot diagram. One of the older 
knot invariants developed in this manner is that 
of Fox tricolorations, named after the Ameri-
can mathematician Ralph Fox in the 1960s. A 
tricoloration of a knot diagram assigns to each 
segment of the diagram one of three colors, with 
just one rule: at each crossing, the three inci-

Preamble
by Kseniya Garaschuk 

Whether in dull pencil or in threatening red pen, from a colleague 
or from your supervisor, an encouraging ‘nice!’ or a simple coun-
terexample to your main result - much of every mathematician’s 
life is spent in the margins. In fact, some of the most baffling mathematical problems of the 

modern era have spawned from someone’s boastful notes in the margin. Somehow, we all find 

it easy to entrust little pieces of our minds to that narrow text-free part of a page. 

I would like to welcome you to the CMS Student Committee’s first addition of Notes from the 

Margin. Inside, you will find everything from news and announcements of the mathematical 

community to articles introducing some interesting research-level mathematics, opinion pieces 

and math-related stories. In this issue, our feature article is Foxxy Knots by Garret Flowers, 

a piece that resulted from the author’s award-winning poster presented at the CMS Winter 

meeting 2010. The problem described in Chris Duffy’s article was widely discussed at that same 

conference, albeit its formulation had to be tweaked to be suitable for publication. Finally, 

Jody Reimer’s article spotlights a mathematician with an innovative and visually captivating 

approach to our subject. This is just the start: in the future, we hope to expand to include more 

pieces and a Distractions Page. 

I really hope this magazine will become a place to share different tidbits of math. We are very 

audience driven, so I urge you to e-mail us at chair-studc@cms.math.ca with your feedback, 

comments and suggestions. And if you happen to find a truly marvelous mathematical morsel that 

just doesn’t fit into the margin, do write it up on a separate piece of paper and submit it to us.

Figure 2. The three Reidemeister Moves (image courtacy of Yamashita, Makoto via Wikipedia)
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dent strands must all share the same color or 
must all be of distinct colors. We let F3(K) denote 
the number of ways to tricolor a knot diagram K.

For example, there are only three ways to tri-col-
or the unknot, but there are nine distinct ways 
to tri-color a trefoil knot. Using the Reidmeister 
moves, it is not terribly difficult to show formal-
ly that this value is an invariant; however, some 
experimentation may be enough to convince 
yourself of its invariance. Since F3 is an invari-
ant, this proves that the trefoil and the unknot 
are actually distinct knots, as if they were the 
same, then they should have the same number 
of tricolorations. Since the trefoil has nine dif-
ferent colorations, and the unknot has only the 

three trivial colorations, it follows that the two 
knots cannot be equivalent. Unfortunately, this 
invariant is not strong enough to distinguish 
between the unknot and the ‘figure-eight’ knot 
shown in Table 1 (which is often referred to as 
the 41 knot).

In Table 2, a list of tricolorations for some simple 
knots is given. One particular property of F3 is 
obvious: the tricoloration numbers are all powers 
of three. There are other, more subtle properties 
as well. We can deduce the number of tricol-
orations on some more complicated knots by 

computing the tricolorations of simpler knots. 
For instance, we may apply a type of surgery 
to knots, known as connected sum composi-
tion. If K1 and K2 are two knot diagrams, then 
we can remove a small segment on each knot 
and then join the loose ends of K1 to the ends 
of K2, as depicted in Figure 3, with the trefoil 
and the figure-eight. This operation is frequent-

ly denoted by K1#K2. It is commutative, and it 
does not matter where we remove the segments 
of either knot. Through simple experimentation, 
or even a short formal proof, one can observe 
that the number of tricolorations on K1#K2 can 
be deduced from F3(K1) and F3(K2) alone [P]. In 
fact, we have

F3(K1#K2)=
1
—
3

(F3(K1) · F3(K2)).

Moreover, the set of tricolorations themselves 
forms a group structure on each diagram. Here, 
we assign each of the three colors a number in 

3. Then we ‘add’ two colorations by adding the 
colors strand-wise: the sum of the colors of a 
strand in the summands denotes the color of the 
same strand in the resulting knot (modulo 3). 
These groups, denoted by C3(K) are also indicat-
ed in Table 2. The first 3 summand represents 
the three trivial colorings of the diagram.

While tricolorability is a nifty and unexpected 
invariant of knots, the colorings themselves 
are not particularly interesting. After all, our 
palatte of colors is extremely limited in scope. 
In order to make our knots truly colorful, we 
hope to enlarge our paint selection to n-colors, 
rather than simply three. This extension does 
not work in the naive sense: we lose our invari-
ance. However, by modifying our rule somewhat, 
we are able to successfully color knots with a 
veritable rainbow of colors. First, take n colors, 
and represent each of the colors as an unique 
element of the group n. Then a Fox n-coloring 
of a diagram K assigns to each strand of the knot 
diagram a color in such a manner so that at each 
crossing the two under-strand colors sum to 

Table 1. All possible tricolorations of the trefoil and figure-
eight knots

Figure 3. The connected sum 31#41 of the trefoil 31 and the 
figure-eight 41. It has 9 possible colorations.

Table 2. Some small examples of F3(K) and C3(K)

K F3(K) C3(K)

unknot 3 3

trefoil (31) 9 3 3

figure-eight (41) 3 3

trefoil#figure-eight (31#41) 9 3 3

trefoil#trefoil (31#31) 27 3 3 3
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Da Vinci in 3D… Without the Goggles!
Jody R. Reimer – University of Manitoba 

If there is one surefire way to get Dr. David Gunderson of the 
University of Manitoba Department of Mathematics excited, it 
is by asking him to show you what he is currently working on in 
his garage.

Following in the footsteps of 
ancient Greeks, such as Archimedes 
and Plato, and armed with a (very 
expensive!) copy of Luca Pacioli’s 
De Divina Propotione, his passion 
for geometry has spilled over to 
combine with his other love – wood-
working. Like many who have gone 
before him, Dr. Gunderson is fascinated by the 
predictability, precision, and aesthetic charm of 
this division of mathematics and his creations 
illustrate clearly its beauty and complexity.

In the late 1980’s, Gunderson took 
a summer job at Artek Manufactur-
ing, a fine woodworking factory. It 
was there that he acquired the at-
tention to detail and the necessary 
finesse to create the models which 
would later follow. A decade later, 
Gunderson saw the famous triangle-

with-a-hole puzzle and subsequently attempted 
to produce it to show to his classroom using a 
hand saw. The result clearly was not a piece of 
fine art, so he purchased a compound miter saw. 

Garret Flowers is currently 
attending graduate school 
at the University of Victoria.  
Mathematically, his interests 
lie somewhere in the space 
between combinatorics 
and geometry. When not 
knotting, Garret is an avid 
circus-artist, musician, and 
bubble-blower (see photo).

twice the color of the over-strand. This definition 
degenerates into our definition of a tricoloring 
when n=3. The number of Fox n-colorings of a 
diagram K is denoted by Fn(K) and is also a knot 
invariant. The set of Fox n-colorings still forms 
an abelian group defined in the same manner as 
before, and we denote this group as Cn(K).

Using these invariants, we can now distinguish 
between the unknot and the 41 knot. It is always 
the case that Fn(unknot)=n and Cn(unknot)= n; 
however, we find that F5(41)>n, since the two 
colorings in Figure 4 are examples of nontrivial 
5-colorings of the 41 knot. In fact, there are 25 
possible 5-colorings of the figure-eight.

The properties mentioned above for tricolorings 
extend naturally to n-colorings. That is,

Fn(K)=nm, for some m  

Fn(K1#K2)=
1
—
n

(Fn(K1)· Fn(K2))

There are many other properties relating various 
n-colorings as well, some are easily discernable 
through combinatorial arguments, while others 
are more interesting and suggest some deeper 
mathematical properties of knots. For instance, 
there exist surprising connections between the 

group Cn(K) and the fundamental group of the 
compliment of the knot. But strengthening the 
link between mathematical knots and artistic 
knots is reason enough to play with these dia-
grams.

[R] Kurt Reidemeister, Elementare Begründung der Knoten-
theorie, Abh. Math. Sem. Univ. Hamburg 5 (1926), 24-32 
[P] Józef H. Przytycki. 3-coloring and other elementary 
invariants of knots. ArXiv

Figure 4. Two nontrivial 5-coloring of the figure-eight (41) 
knot, where the numbers 0, 1, 2, 3, 4 in 5 are associated to 
red, green, blue, yellow and purple, respectively.

Figure 5. A 5-coloring of the 92 knot, and an 11-coloring of 
the 910 knot
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Then he wondered if he could master a dodeca-
hedron. The rest is, as they say, history. 

Much of his inspiration comes from De Divina 
Propotione. This work contains 60 drawings by 
Leonardo da Vinci of various solids and see-
through frameworks, several of which Gunderson 
has constructed. Many of these sculptures are 
polyhedra (3D solids with polygonal faces), and 
each fit into further subcategories. Only five 
regular polyhedra exist (with all faces being 
the same regular polygon and with the same 
number meeting at each vertex), while the 

class of semi-regular poly-
hedra is larger (examples 
being the Archimedean 
solids, regular prisms, and 
antiprisms – two parallel 
polygons connected by a 
band of alternating trian-

gles). The Campanus Sphere is a special rarity, 
found in very few other collections of the sort 
and, with five-inch lengths, Gunderson’s is one 
of the largest, valued at 
$2500! Further models have 
resulted from the works of 
Johannes Kepler, who, while 
best known for his laws of 
planetary motion, also exten-
sively studied polyhedra: for 
example, it was Kepler who 
discovered the infinite class 
of antiprisms. In addition to 
these, Gunderson has also 
crafted several other wooden 
models, including puzzles, a 
Möbius band, trefoil knots, 
and space-filling polyhedra. 

Made from a wide array of 
woods (approximately 35 
different varieties), and with 
each shape posing unique 
obstacles, the logistics of bringing da Vinci’s 
sketches to life present some challenges. De-
termining cutting angles and part placement is 
a task not to be done through trial and error, 
especially for forms constructed as see-through 
frameworks. The Campanus Sphere previously 
mentioned required three pages of meticulous 
calculations. In addition to mathematical dif-

ficulties, there are various issues of technique, 
with everything going wrong from stain that 
refuses to dry, to models 
ripped out of hand by 
belt sanders, and an in-
cident involving the loss 
of fingertips (details 
omitted). 

Gunderson’s current 
project is the Mysterium 
Cosmographicum, which, 
when completed, will 
be the first of its kind. 
Dreamed up by Johannes 
Kepler, it is a model pro-
posing the relationship 
between the six planets 
known at the time (un-
fortunately, this did not 
turn out to be accurate, but was nonetheless a 
nice idea). He believed, and his 1596 book by the 
same name posited it, the model comprised of the 

five Platonic solids layered 
between the six planetary 
spheres. Allegedly, his plan 
was to have it functioning as 
a punchbowl dispensing as-
sorted beverages, but it was 
never completed. Perhaps 
Gunderson will one day have 
the honour. 

Thus, what started as a means 
to demonstrate mathematical 
concepts to students and a 
unique gift idea for friends 
and colleagues has now over-
flowed Dr. Gunderson’s office 
and spilled into the main hall 
of the mathematics building. 
With whatever new projects 
come up in the future, these 

models will continue to demonstrate delicate 
craftsmanship as well as the beauty and diver-
sity of geometry.

The images are courtesy of Virtual Polyhedra project and Dr. 
Gunderson. See their web-sites for more:

http://www.georgehart.com/virtual-polyhedra/kepler.html 
http://home.cc.umanitoba.ca/~gunderso/

Determining cutting 
angles and part 

placement is a task not 
to be done through trial 

and error, especially 
for forms constructed 

as see-through 
frameworks.

Jody Reimer Currently in 
the final year of her under-
graduate degree, Jody has 
recently decided to shift her 
focus towards applied math, 
specifically the relation-
ship between math and 
ecology. In the time remain-
ing after homework and work 
as a teaching assistant, 
she enjoy baking bread, 
extended coffee breaks with 
friends, and being outside. 
Jody is eager to continue on 
to master’s studies next year 
at Oxford University.
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Dr. Johnson’s latex problem
by C. F. Duffy 

Sally had big hopes for her career. She was going to be the 
next John Forbes Nash, but an unfortunate liaison with the 

husband of the head of the department of mathematics had 
left her career in tatters. ``Sure’’, she reasoned, ``I seduced 
him, but he was the one who let the secret slip.’’

 Now, after having her good name 
tarnished, she couldn’t find a 
post-doc position and she spent 
her days working in the finance 
department of the local hospital. 
Most days her mental talents were 

wasted; being a number-bot isn’t 
especially hard work for a woman 

with an IQ north of 150. However, last 
week was a change from 

the monotony. Remember-
ing a crude riddle she first 

heard as a graduate student, 
she managed to come up with 
a way to both cut the budget 
and confuse simple-minded 
doctors. ``It is so simple’’, she 
explained to the chief accoun-
tant. ``We can have one doctor 
use two pairs of gloves for three 
surgeries.’’ The chief accoun-
tant paused for a moment — ̀ `I 
don’t understand, but that has never stopped 
me from slashing the budget before. Let’s do it. 
Draft the memo’’.

``These damned budget cuts are getting worse’’, 
sighed Dr. Johnson, as he picked up the latest 
memo from the hospital’s finance department. 
``Why can’t we just go to an American model? 

Sure, everyone else is screwed, but at least I 
won’t have to have placeboes prescribed to my 
wife instead of her anti-psychotic medication’’, 
he wondered aloud. He thought that after the 
hospital replaced all of the tape and gauze with 
Spiderman Band-Aids, it couldn’t get any worse. 
Indeed, it had. The most recent round of cutbacks 
had been the worst yet. It wasn’t enough to start 
having his orthopaedic department share sup-

plies with those frauds in psych 
ward, but now the accountants 
were telling him to cut back on 
his department’s use of rubber 
gloves. ``This doesn’t even make 
any sense. How can I use two 
pairs of gloves to complete 
three surgeries without putting 
anyone at risk? I certainly 
don’t want their blood on my 
hands no more than they want 
another’s blood inside them. 
They’ve gone too far.’’ With 

that he promptly opened his computer, sent a 
sharply worded missive off to the CFO and turned 
to a more pressing problem: finding ice for his 
quickly warming glass of scotch. 

Sally opened her eyes from her daily midday 
nap at her desk. Wiping the sleep from her 
eyes, she noticed the flashing light on her 

The student poster sessions have been gaining momentum and are 
receiving increased attention from the community.

Participate in the next one that will be held during the CMS Summer 2011 meeting in Edmonton. 

Present your research in a relaxed one-on-one atmosphere and compete for prizes! Check the 

conference web-site for tips that will help you create a winning poster and e-mail Kseniya at 

chair-studc@cms.math.ca if you have any questions. 

``It is so simple’’, 
she explained to the 

chief accountant. 
``We can have one 

doctor use two pairs 
of gloves for three 

surgeries.’’ 
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Blackberry handset. It was probably another of 
her graduate school friends telling her about their 
latest research results in something obscure like 
Kloosterman sums, she thought. It wasn’t.``Dr. 
Johnson? Who the hell is Dr. Johnson and why 
has his email been forwarded to me. He’s a doctor, 
he should be smart enough to figure it out’’, she 
mumbled, still half asleep. ``I 
suppose I could give him a hint’’, 
she sighed.

As he reached into his office mini-
fridge, he heard the familiar chime 
that told him he had another new 
email. ``Probably just another 
request for a consult’’, he snorted 
with derision. ``When will people 
learn not to combine alcohol and 
skiing?’’. Returning to his desk 
without the ice (he had forgot 
to have his assistant refill the 
tray after his morning scotch), 
he opened his email. It was not a 
message from a family doctor, but 
a return email from someone in the accounting 
department named Sally. It was as short as it was 
cryptic. ``Wear both pairs’’. To Dr. Johnson this 
made even less sense, and he let the accountant 
know in his expletive-ridden reply.

Sally had just managed to drift off to her 2 p.m. 
nap when she was jarred awake by the sharp 
chime of her Blackberry handset. She quickly 
realized that this doctor wasn’t about to figure 
this out on his own. ``I don’t give a damn who 
this Dr. Johnson is. He isn’t going to intimidate 
me’’, she thought. Much in the way she used to 
handle her supervisor, she figured the best way 

to deal him was in person, and set off down the 
hall to have a little chat with Dr. Johnson.

Dr. Johnson sipped the last of his scotch and 
finished looking through his notes before his 
surgery-filled afternoon. He most recent reply 
to the accounting department had gone un-

answered. ``That made my 
point’’, he proudly chuckled 
to himself as began to men-
tally prepare himself for the 
challenges ahead. Suddenly, 
his concentration was broken 
by a pair of sharp knocks 
on his door. ``Come in!’’ he 
bellowed to this clearly un-
wanted visitor. 

It was over as quickly as it 
had begun. As Sally waltzed 
from his office, Dr. Johnson 
looked on in disbelief. ``It 
was so simple, Richard. Why 
didn’t I think of it myself?’’ 

he sheepishly muttered to himself. He leaned 
back in his chair and closed his eyes. As he 
drifted off to sleep he began to wonder what 
other applications he could find for this newly-
learned technique. Though he didn’t realize it 
then, this technique would be his saviour when 
he next encountered Sally a few months later at 
the hospital’s Christmas party...

What did Sally say to Dr. Johnson?

Both the CMS and the Student Committee have been expanding their horizons in order to reach 

students in every University in Canada.

We invite you both to help us on our mission and benefit from it 
by submitting your advertisement here, on the pages of Notes from 
the Margin.

Please e-mail chair-studc@cms.math.ca for more information.

Christopher F. Duffy 
is a MSc student at the 
University of Victoria. He 
was coerced into contribut-
ing to this project by his 
officemate, the editor.

Much in the way 
she used to handle 
her supervisor, she 

figured the best way 
to deal him was in 
person, and set off 
down the hall to 
have a little chat 
with Dr. Johnson. 

Put on both pairs of gloves and perform the first surgery. 
Remove the outer pair and perform the second surgery. Turn 
the outer pair inside-out and put them back over the inner 
pair. Perform the third surgery. Given n pairs of gloves, what is 
the maximum number of successful surgeries that Dr. Johnson 
can perform?
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CMS Summer Meeting

The 2011 CMS Summer Meeting will take place June 3 - 5, 2011, to be hosted by the University 
of Alberta in Edmonton.

The CMS Meetings provide students with many opportunities, such as networking, learning, 
presenting and simply having fun! For more information about scientific sessions, go to the 
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Sarah Plosker is just 
getting started on a PhD 
in Applied Mathematics at 
the University of Guelph. 
Her research interests 
lie within the fields of 
Operator Algebras and 
Quantum Information 
Theory. She hopes to one 
day make significant con-
tributions to the area and 
have a major theorem 
named after her.

Where to look to find a job?
by Sarah Plosker

The Student Committee held a student panel discussion on the Hiring Process at the Vancouver 2010 

Winter CMS Meeting. Here are some links our panelists have suggested for students currently on the 

market for a job. 

American Mathematical Society: 
eims.ams.org/search.cfm

Canadian Mathematical Society: 
cms.math.ca/

MathJobs: 
www.mathjobs.org 

Mathematics Jobs Wiki: 
notable.math.ucdavis.edu/wiki/Mathemat-
ics_Jobs_Wiki

European Mathematical Society: 
www.euro-math-soc.eu/

Institute for Mathematics and 
its Applications: www.ima.umn.edu/

London Mathematical Society: 
www.lms.ac.uk/ and www.jobs.ac.uk/

Times Higher Education: 
www.timeshighereducation.co.uk/

Five minute interviews at MAA AMS 
joint meetings: 
www.maa.org/meetings/jmm.html

These are great resources. Even if you are not job hunting at this point, take a look to see what the 

market is like today and what other info is available on these sites.

David Thomson is a 
PhD candidate at Carleton 
University. His main research 
interests are on all alge-
braic and number theoretic 
aspects of finite fields and 
their applications. Currently 
David is enjoying a research 
term in Dublin, Ireland 
at the Claude Shannon 
Institute. In his spare time 
he plays every sport except 
hockey, fumbles around 
on his acoustic guitar and 
enjoys a nice bottle of 
Italian red whilst cooking 
amazing risotto.


