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1. A function f is called injective if when f(n) = f(m), then n = m. Suppose that f is injective and

1

f(n)
+

1

f(m)
=

4

f(n) + f(m)
.

Prove m = n.

Solution: Clearing denominators gives:

(f(n) + f(m))(f(n) + f(m)) = 4f(n)f(m)

f(n)2 + 2f(m)f(n) + f(m)2 = 4f(n)f(m)

f(n)2 − 2f(m)f(n) + f(m)2 = 0

(f(n)− f(m))2 = 0

Thus, f(n) = f(m), and since f is injective, that means m = n.
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2. Rosemonde is stacking spheres to make pyramids. She constructs two types of pyramids Sn and Tn.
The pyramid Sn has n layers, where the top layer is a single sphere and the ith layer is an i× i
square grid of spheres for each 2 ≤ i ≤ n. Similarly, the pyramid Tn has n layers where the top
layer is a single sphere and the ith layer is i(i+1)

2 spheres arranged into an equilateral triangle for
each 2 ≤ i ≤ n.

If all the spheres have radius 2, determine the smallest n so that the difference between the height
of Sn and the height of Tn is greater than 2019.

Solution: We can determine formuale for the heights of Sn and Tn as:

H(Sn) = 4 + 2
√

2(n− 1)

H(Tn) = 4 +
4

3

√
6(n− 1)

Setting |H(Sn)−H(Tn)| > 2019, we find that:

n >
2019

4
3

√
6− 2

√
2

+ 1.

And the smallest integer value for n is 4616.
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3. Let f(x) = x3 + 3x2 − 1 have roots a, b, c.

(a) Find the value of a3 + b3 + c3.

(b) Find all possible values of a2b+ b2c+ c2a.

Solution:

(a) Vieta’s formula gives abc = 1, ab+ ac+ bc = 0, and a+ b+ c = −3. Let p = a2b+ b2c+ c2a,
and let q = ac + c2b+ b2a. First, we noet that p+ q = (ab+ ac+ bc)(a+ b+ c)− 3abc = −3. So,

a3 + b3 + c3 = (a+ b+ c)3 − 3(p+ q)− 6abc

= (−3)3 − 3(−3)− 6(1)

= −24

(b) Now,

pq = (a4bc+ b4ca+ c4ab) + 3a2b2c2 + (a3b3 + b3c3 + c3a3)

= abc(a3 + b3 + c3) + 3(abc)2

+ ((a2b2 + a2c2 + b2c2)(ab+ ac+ bc)− abc(p+ q))

= 1(−24) + 3(1)2 + ((a2b2 + a2c2 + b2c2)(0)− 1(−3))

= −18

Thus, {p, q} are the roots of y2 + 3y − 18 = 0, hence {p, q} = {−6, 3}. Since switching b and c
switches p and q, we see that both values are possible, hence {−6, 3} is the set of possible
values for a2b+ b2c+ c2a.
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4. Let n be a positive integer. For a positive integer m, we partition the set {1, 2, 3, . . . ,m} into n
subsets, so that the product of two different elements in the same subset is never a perfect square.
In terms of n, find the largest positive integer m for which such a partition exists.

Solution: Suppose that m ≥ (n+ 1)2. Then each of the n+ 1 numbers 12, 22, . . . , (n+ 1)2 must lie
in a different subset. But there are only n subsets, so such a partition is not possible.

Conversely, assume that m ≤ (n+ 1)2 − 1 = n2 + 2n. For 1 ≤ i ≤ m, we can write i uniquely in the
form

i = a2i · bi,

where ai and bi are positive integers, and bi is not divisible by the square of a prime. Since
i ≤ m < (n+ 1)2, ai ≤ n for all 1 ≤ i ≤ m.
For 1 ≤ j ≤ n, let

Sj = {i : 1 ≤ i ≤ m, ai = j}.

We see that S1, S2, S3, . . . , Sn form a partition of {1, 2, 3, . . . ,m}. We claim that the product of two
different elements in the same subset Sj is never a perfect square.

For the sake of contradiction, suppose that there exist distinct k ∈ Sj and l ∈ Sj so that kl is a
perfect square. Since

kl = (a2k · bk)(a2l · bl) = (j2 · bk)(j2 · bl) = j4bkb,

the product bkbl must also be a perfect square.

Since k = j2 · bk and l = j2 · bl are distinct, bk and bl must also be distinct. This means that there
must be some prime p that appears in the prime factorization of one of bk and bl, but not the other.
Without loss of generality, assume that p appears in the prime factorization of bk but not bl. Since
bk is not divisible by the square of a prime, bk has exactly one factor of p. But then bkbl also has
exactly one factor of p, so it cannot be a perfect square, contradiction. Thus, the partition has
exactly the property we seek. We conclude that the largest such possible value of m is n2 + 2n.
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5. Let (m,n,N) be a triple of positive integers. Bruce and Duncan play a game on an m× n array,
where the entries are all initially zeroes. The game has the following rules.

• The players alternate turns, with Bruce going first.

• On Bruce’s turn, he picks a row and either adds 1 to all of the entries in the row or subtracts 1
from all the entries in the row.

• On Duncan’s turn, he picks a column and either adds 1 to all of the entries in the column or
subtracts 1 from all of the entries in the column.

• Bruce wins if at some point there is an entry x with |x| ≥ N.

Find all triples (m,n,N) such that no matter how Duncan plays, Bruce has a winning strategy.

Solution: Bruce can win in all cases except m = n = 1, N > 1. Indeed, if m = n = 1, then Bruce
obviously wins with N = 1, and if N > 1 then Duncan can just undo Bruce’s move every time,
resetting the array back to 0.

We now break into two cases: m > 1 and n > 1. If n > 1, then Bruce will follow the strategy of
adding 1 to the first row every time. Let the sum of the elements of the first row be Sr after r
turns. Then S0 = 0, on Bruce’s turn he increases the sum by n, and on Duncan’s turn he must add
either 1 or -1 to the sum, by adding that amount to the element in the first row of whichever
column he chooses. In particular, after any 2 turns, the sum of the elements of the first row goes up
by at least n− 1 ≥ 1. Therefore S2r ≥ r, and therefore S2nN ≥ nN. This is a sum of n integers,
therefore, at least one of them is greater than or equal to nN

n = N, and Bruce has won.

Now assume m > 1. After r turns, let the element in the top left of the board be ar, and the
element below it be br. Define dr = ar − br. Bruce’s strategy is gain to add 1 to the first row at

every turn. Thus if the r + 1th turn is Bruce’s, then dr + 1 = dr + 1. However if it were Duncan’s
turn,then he changes both ar and br by the same value (either -1, 0, or 1), which does not change
dr. Hence we have that d2r ≥ r. In particular, d4N−3 ≥ 2N − 1. If Bruce has not won yet, then
−N + 1 ≤ a4N−3, b4N−3 ≤ N − 1 and so d4N−3 ≤ (N − 1)− (−N + 1) = 2N − 2, which is a
contradiction, so Bruce wins.

6. Pentagon ABCDE is given in the plane. Let the perpendicular from A to line CD be F , the
perpendicular from B to DE be G, from C to EA be H, from D to AB be I, and from E to BC be
J . Given that lines AF,BG,CH, and DI concur, show that they also concur with line EJ .

Solution: We start with a lemma. Given four points W,X, Y, Z on the plane, lines WX and Y Z
are perpendicular if and only if WY 2 −WZ2 = XY 2 −XZ2.

Proof: Let WX be on the x-axis, with coordinates (w, 0) and (x, 0). Let Y = (y1, y2) and
Z = (z1, z2) be the coordinates of points Y and Z. Then, we have that
WY 2 −XY 2 = (w − y1)2 − (x− y1)2 = w2 − x2 − 2(w − x)y1. Similarly,
WZ2 −XZ2 = w2 − x2 − 2(w − x)z1, so that these two quantities are equal precisely when y1 = z1;
that is, Y Z and WX are perpendicular.

Let the common intersection of lines AF,BG,CH, and DI be point P . We know that because PA
and CD are perpendicular, we have PC2 − PD2 = AC2 −AD2. Similarly, we have the equations
PD2 − PE2 = BD2 −BE2, PE2 − PA2 = CE2 −CA2, and PA2 − PB2 = DA2 −DB2. Adding all
of these equations up, we get that PB2 − PC2 = EB2 −EC2, and hence that lines EP and BC are
perpendicular.
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7. There are n passengers in a line, waiting to board a plane with n seats. For 1 ≤ k ≤ n, the kth

passenger in line has a ticket for the kth seat. However, the first passenger ignores his ticket, and
decides to sit in a seat at random. Thereafter, each passenger sits as follows: If his/her assigned is
empty, then he/she sits in it. Otherwise, he/she sits in an empty seat at random. How many
different ways can all n passengers be seated?

Solution: For each possible sequence of seats taken, we construct a sequence as follows: a0 = 1,
and for i ≥ 1, ai is the number of the seat that passenger ai − 1 sits in. The last term of the
sequence is the number of the passenger sitting in the first seat. For example, if n = 5, and
passengers 4, 1, 3, 2, 5 are sitting in seats 1, 2, 3, 4, 5, respectively, then the sequence is 1, 2, 4.

We consider how the passengers take their seats, starting with the first passenger. By construction,
the first passenger sits in seat a1. Then passengers 2, 3, . . . , a1 − 1 take their assigned seats, until
passenger a1, who discovers that his seat is already taken. If passenger a1 sits in the first seat, then
the sequence terminates (with the term a1). Also, all subsequent passengers take their assigned
seats. Otherwise, passenger a1 sits in some seat numbered a2, where a2 > a1.

Then passengers a1 + 1, a1 + 2, . . . , a2 − 1 take their assigned seats, until passenger a2, who
discovers that his seat is already taken. If passenger a2 sits in the first seat, then the sequence
terminates (with the term a2). Also, all subsequent passengers take their assigned seats. Otherwise,
passenger a2 sits in some seat numbered a3, where a3 > a2, and so on.

This process continues, until a passenger (say passenger ak) sits in the first seat, and the remaining
passengers take their assigned seats. From our work above, we see that

• The sequence a0 = 1, a1, a2, . . . , ak is increasing, and

• If the number j does not appear in the sequence above, where 2 ≤ j ≤ n, then passenger j sits
in his assigned seat.

Thus, each possible seating corresponds to a subset {a1, a2, . . . , ak} of {2, 3, . . . , n}. There are 2n−1

such subsets, so there are 2n−1 different possible seatings.
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8. For t ≥ 2, define S(t) as the number of times t divides into t!. We say that a positive integer t is a
peak if S(t) > S(u) for all values of u < t.

Prove or disprove the following statement:

For every prime p, there is an integer k for which p divides k and k is a peak.

Solution: First, for a prime p and number n, the number of factors of p that divide n! is equal to

vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
.

Also, note that since S(n) can be arbitrarily large, there must be infinitely many peaks. Let
T (n) = S(n)/n. Now, consider a peak n0 greater than

∏
q prime

q
b p−1
q−1
c
,

which is a finite sum because there is no term when q > p. Then, there must be some prime q so
that

q
b p−1
q−1
c+1|n0.

Assume for sake of contradiction that p does not such an n. Then, we claim that S(pn) ≥ pS(n).
We have that for every q|p, the number of times that q divides (pn)! is at least p times the number
of times that q divides n!. Finally, we claim that for our chosen prime q with the above inequality,
S(pn) has more factors of p than it does qk, where k is the number of times q divides n. Indeed, it
remains to show that

1

k

∞∑
i=1

⌊
n

qi

⌋
≤
∞∑
i=1

⌊
n

pi

⌋
.

When q > p, this is clearly true. Assume q < p. But we may bound

∞∑
i=1

⌊
n

qi

⌋
≤ n

q − 1
+ logq n+ 2,

because we may bound the first logq n terms of the fractional part by 1 and the remainder by
themselves. Similarly, we have

∞∑
i=1

⌊
n

pi

⌋
≥ n

p− 1
,

simply by removing the floors, so we just require

k ≥ p− 1

q − 1
+

(p− 1)(logq n+ 2)

n
.
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However, the second term is clearly smaller than 1
q−1 , because we have

n > (p− 1)(q − 1)(logq n+ 2) by our above bound on n. In particular, we have that
S(pn0) ≥ pS(n0), so that if pn0 is not a peak, then there must be some peak n1 ∈ [n0, pn0) with
S(n1) > pS(n0). In particular, T (n1) > T (n0). Since n1 > n0, the conditions above are satisfied
again, and we can construct an increasing sequence of peaks n0, n1, . . . where the T -values are also
increasing. However, for any fixed ε, there are only finitely many n with T (n) > ε; for instance, the
maximum exponent on any prime q must be at most 1

(q−1)ε . This provides a contradiction.
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