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675. ABC is a triangle with circumcentre O such that 6 A exceeds 90◦ and AB < AC. Let M and N be
the midpoints of BC and AO, and let D be the intersection of MN and AC. Suppose that AD =
1
2 (AB + AC). Determine 6 A.

676. Determine all functions f from the set of reals to the set of reals which satisfy the functional equation

(x− y)f(x + y)− (x + y)f(x− y) = 4xy(x2 − y2)

for all real x and y.

677. For vectors in three-dimensional real space, establish the identity

[a× (b−c)]2 +[b× (c−a)]2 +[c× (a−b)]2 = (b×c)2 +(c×a)2 +(a×b)2 +(b×c+c×a+a×b)2 .

678. For a, b, c > 0, prove that
1

a(b + 1)
+

1
b(c + 1)

+
1

c(a + 1)
≥ 3

1 + abc
.

679. Let F1 and F2 be the foci of an ellipse and P be a point in the plane of the ellipse. Suppose that
G1 and G2 are points on the ellipse for which PG1 and PG2 are tangents to the ellipse. Prove that
6 F1PG1 = 6 F2PG2.

680. Let u0 = 1, u1 = 2 and un+1 = 2un + un−1 for n ≥ 1. Prove that, for every nonnegative integer n,

un =
∑ {

(i + j + k)!
i!j!k!

: i, j, k ≥ 0, i + j + 2k = n

}
.

681. Let a and b , the latter nonzero, be vectors in R3. Determine the value of λ for which the vector
equation

a− (x× b) = λb

is solvable, and then solve it.

682. The plane is partitioned into n regions by three families of parallel lines. What is the least number of
lines to ensure that n ≥ 2010?

683. Let f(x) be a quadratic polynomial. Prove that there exist quadratic polynomials g(x) and h(x) for
which

f(x)f(x + 1) = g(h(x)) ,

1


