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486. Determine all quintuplets (a, b, c, d, u) of nonzero integers for which

a

b
=

c

d
=

ab + u

cd + u
.

487. ABC is an isosceles triangle with 6 A = 100◦ and AB = AC. The bisector of angle B meets AC in D.
Show that BD + AD = BC.

488. A host is expecting a number of children, which is either 7 or 11. She has 77 marbles as gifts, and
distributes them into n bags in such a way that whether 7 or 11 children come, each will receive a
number of bags so that all 77 marbles will be shared equally among the children. What is the minimum
value of n?

489. Suppose n is a positive integer not less than 2 and that x1 ≥ x2 ≥ x3 ≥ · · · ≥ xn ≥ 0,
n∑

i=1

xi ≤ 400 and
n∑

i=1

x2
i ≥ 104 .

Prove that
√

x1 +
√

x2 ≥ 10. is it possible to have equality throughout? [Bonus: Formulate and prove
a generalization.]

490. (a) Let a, b, c be real numbers. Prove that

min [(a− b)2, (c− a)2, (a− b)2] ≤ 1
2
[a2 + b2 + c2] .

(b) Does there exist a number k for which

min [(a− b)2, (a− c)2, (a− d)2, (b− c)2, (b− d)2, (c− d)2] ≤ k[a2 + b2 + c2 + d2]

for any real numbers a, b, c, d? If so, determine the smallest such k.
[Bonus: Determine if there is a generalization.]

491. Given that x and y are positive real numbers for which x+y = 1 and that m and n are positive integers
exceeding 1, prove that

(1− xm)n + (1− yn)m > 1 .

492. The faces of a tetrahedron are formed by four congruent triangles. if α is the angle between a pair of
opposite edges of the tetrahedron, show that

cos α =
sin(B − C)
sin(B + C)

where B and C are the angles adjacent to one of these edges in a face of the tetrahedron.
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