2020 CMO Qualifying Repêchage

A competition of the Canadian Mathematical Society and supported by the Actuarial Profession.

A full list of our competition sponsors and partners is available online at https://cms.math.ca/Competitions/Sponsors/

Official Problem Set

- 1. Show that for all integers $a \ge 1$, $\lfloor \sqrt{a} + \sqrt{a+1} + \sqrt{a+2} \rfloor = \lfloor \sqrt{9a+8} \rfloor$.
- 2. Given a set S, of integers, an optimal partition of S into sets T, U is a partition which minimizes the value |t u|, where t and u are the sum of the elements of T and U respectively.

Let P be a set of distinct positive integers such that the sum of the elements of P is 2k for a positive integer k, and no subset of P sums to k.

Either show that there exists such a P with at least 2020 different optimal partitions, or show that such a P does not exist.

3. Let N be a positive integer and $A = a_1, a_2, \ldots, a_N$ be a sequence of real numbers. Define the sequence f(A) to be

$$f(A) = \left(\frac{a_1 + a_2}{2}, \frac{a_2 + a_3}{2}, \dots, \frac{a_{N-1} + a_N}{2}, \frac{a_N + a_1}{2}\right)$$

and for k a positive integer define $f^k(A)$ to be f applied to A consecutively k times (i.e. $f(f(\cdots f(A)))$)

Find all sequences $A = (a_1, a_2, \dots, a_N)$ of integers such that $f^k(A)$ contains only integers for all k.

- 4. Determine all graphs G with the following two properties:
 - G contains at least one Hamilton path.
 - For any pair of vertices, $u, v \in G$, if there is a Hamilton path from u to v then the edge uv is in the graph G.

2020 CMO Qualifying Repêchage

- 5. We define the following sequences:
 - Sequence A has $a_n = n$.
 - Sequence B has $b_n = a_n$ when $a_n \not\equiv 0 \pmod{3}$ and $b_n = 0$ otherwise.
 - Sequence C has $c_n = \sum_{i=1}^n b_i$.
 - Sequence D has $d_n = c_n$ when $c_n \not\equiv 0 \pmod{3}$ and $d_n = 0$ otherwise.
 - Sequence E has $e_n = \sum_{i=1}^n d_i$.

Prove that the terms of sequence E are exactly the perfect cubes.

- 6. In convex pentagon ABCDE, AC is parallel to DE, AB is perpendicular to AE, and BC is perpendicular to CD. If H is the orthocentre of triangle ABC and M is the midpoint of segment DE, prove that AD, CE and HM are concurrent.
- 7. Let a, b, c be positive real numbers with ab + bc + ac = abc. Prove that

$$\frac{bc}{a^{a+1}} + \frac{ac}{b^{b+1}} + \frac{ab}{c^{c+1}} \ge \frac{1}{3}.$$

8. Find all pairs (a, b) of positive rational numbers such that $\sqrt[b]{a} = ab$.