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1 Determine all real solutions to the following equation:

2(2
x) − 3 · 2(2

x−1+1) + 8 = 0.

Solution: Let y = 2x−1. Then 2x = 2y. Then the left-hand side of the equation becomes

22y − 3 · 2y+1 + 8 = 0.

Equivalently,
22y − 6 · 2y + 8 = 0.

This factors as
(2y − 4)(2y − 2) = 0.

Therefore, 2y = 2 or 4. This yields the solutions y = 1, 2. Therefore, 2x−1 = 1, 2, which yields
solutions x− 1 = 0, 1. Hence, x = 1, 2.

We now verify these are indeed solutions. If x = 1, then 22
1

− 3 · 22
0+1 +8 = 22 − 3 · 22 +8 =

4− 12+8 = 0. Hence, x = 1 is a solution. If x = 2, then 22
2

− 3 · 22
1+1+8 = 24− 3 · 23+8 =

16− 24 + 8 = 0. Hence, the solutions are indeed x = 1, 2. �
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2 In triangle ABC, ∠A = 90◦ and ∠C = 70◦. F is point on AB such that ∠ACF = 30◦, and
E is a point on CA such that ∠CFE = 20◦. Prove that BE bisects ∠B.

Solution: By the angle bisector theorem, it suffices to show that

BA

BC
=

EA

EC
.

By the definition of sin, we have that sin 70◦ = BA/BC. By sine law,

EA

EC
=

EA

EF
·
EF

EC
= sin 40◦ ·

sin∠ECF

sin∠EFC
= sin 40◦ ·

sin 30◦

sin 20◦
.

Hence, it suffices to show that

sin 70◦ =
sin 40◦ sin 30◦

sin 20◦
=

sin 40◦

2 sin 20◦
.

By the double-angle formula for sin, we have that sin 40◦ = 2 sin 20◦ cos 20◦. Hence,

sin 40◦

2 sin 20◦
= cos 20◦ = sin 70◦.

This proves the desired equality. �
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3 A positive integer n has the property that there are three positive integers x, y, z such that
lcm(x, y) = 180, lcm(x, z) = 900 and lcm(y, z) = n, where lcm denotes the lowest common
multiple. Determine the number of positive integers n with this property.

Solution: Note that 5 divides into 180 only once. Hence, 5 divides into each of x, y at most
once. But 5 divides into 900 twice, since 900 is divisible by 25. Since lcm(x, z) = 900 and 5
divides into x at most once, 5 divides into z exactly twice. Hence, z is divisible by 25.

Note that 900 = 22 × 32 × 52 and z is a factor of 900 which is divisible by 52. Therefore, z
can be of the form

z = 2a × 3b × 52,

where 0 ≤ a, b ≤ 2. Note also that since lcm(x, y) = 180, y is a factor of 180 = 22 × 32 × 5.
Therefore, y can only be of the form

y = 2d × 3e × 5f ,

where 0 ≤ d, e ≤ 2 and 0 ≤ f ≤ 1. Therefore, n = lcm(y, z) must be of the form 2r × 3s × 52,
where r = max{a, d} ≤ 2 and s = max{b, e} ≤ 2. Therefore, 0 ≤ r, s ≤ 2. I claim that all
numbers of this form are feasible values of n. There are three choices of each of r, s, which
yield in nine different possible values of n.

I claim that (x, y, z) = (180, 1, n) satisfies the given equations. Clearly, lcm(x, y) = lcm(180, 1) =
180 and lcm(x, z) = lcm(180, z) = lcm(22× 32× 5, 2a× 3b× 52) = 22× 32× 52 = 900. Finally,
lcm(y, z) = lcm(1, n) = n. This proves the claim.

Therefore, there are indeed nine possible values for n. �
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4 Four boys and four girls each bring one gift to a Christmas gift exchange. On a sheet of
paper, each boy randomly writes down the name of one girl, and each girl randomly writes
down the name of one boy. At the same time, each person passes their gift to the person
whose name is written on their sheet. Determine the probability that both of these events
occur:

(i) Each person receives exactly one gift;

(ii) No two people exchanged presents with each other (i.e., if A gave his gift to B, then B
did not give her gift to A).

Solution: The answer is 27/8192.

Each of the eight persons has a choice of four people to give his/her gift to. Therefore, there
are 48 = 216 total number of combinations of how gifts can be exchanged.

Let A,B,C,D be the four boys and a, b, c, d be the four girls. There are 4! = 4×3×2×1 total
number of ways for the four boys to give gifts to the girls so that each girl receives exactly
one gift. Without loss of generality, suppose A gave a his gift, B gave b his gift, C gave c his
gift and D gave d his gift.

Consider the boy girl a gave her gift to. Since A gave his gift to a, a did not give her gift to
A. Hence, there are three boys for which girl a could have given her gift to. Without loss of
generality, suppose a gave her gift to B. Note that b could not have given her gift to B, since
B gave his gift to b. We now consider two cases:

If b gave her gift to A, then among A,B, a, b, we have the following cycle of exchanges:
A → a → B → b → A. Then since C already gave his gift to c and D already gave his gift to
d, then c must have given her gift to D and d must have given her gift to C. Hence, there is
only one outcome in this case.

If b gave her gift to C, then we have the following sequence of exchanges so far: A → a →
B → b → C → c. Girl c could have given the gift to either A or D. But girl c could not have
given her gift to A, since this would imply that D and d exchanged gifts. Therefore, girl c
gave her gift to D and consequently, girl d gave her gift to A. The following is the resulting
sequence of exchanges is A → a → B → b → C → c → D → d → A. This is the only possible
outcome in this case.

If b gives her gift to D, then using the same argument as when b gives her gift to C, there is
only one outcome in this case.
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Hence, the total number of combination of exchanges that satisfy both (i) and (ii) is 24× 3×
(1 + 1 + 1) = 23 × 33.

Therefore, the probability that both (i) and (ii) occur is 23 × 33/216 = 33/213 = 27/8192. �
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5 For each positive integer k, let S(k) be the sum of its digits. For example, S(21) = 3 and
S(105) = 6. Let n be the smallest integer for which S(n) − S(5n) = 2013. Determine the
number of digits in n.

Solution: The answer is 504.

Given a digit A, define f(A) to be the tens-digit of 5A and g(A) be the ones-digit of 5A. Note
that

A f(A) g(A)

0 0 0

1 0 5

2 1 0

3 1 5

4 2 0

5 2 5

6 3 0

7 3 5

8 4 0

9 4 5

We will need the following lemma.

Lemma: Let n be a positive integer and let Ak−1, Ak−2, . . . , A0 be the digits of n, from left
to right. Then

S(n)− S(5n) =
k−1
∑

j=0

(Aj − f(Aj)− g(Aj)) .

Proof of Lemma: Clearly,

S(n) =
k−1
∑

j=0

Aj .

We now consider S(5n). Note that

n =
k−1
∑

j=0

Aj10
j .

Then

5n =
k−1
∑

j=0

5 ·Aj10
j =

k−1
∑

j=0

(10f(Aj) + g(Aj))10
j =

k−1
∑

j=0

(

f(Aj) · 10
j+1 + g(Aj)10

j
)

=
k

∑

j=0

(f(Aj−1) + g(Aj))10
j ,
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where we define f(A−1) = 0 and g(Ak) = 0. Note that f(Aj−1) ∈ {0, 1, 2, 3, 4} and g(Aj) ∈
{0, 5}. Therefore, f(Aj−1) + g(Aj) ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, i.e. is a single digit. Therefore,

S(5n) =
k

∑

j=0

(f(Aj−1) + g(Aj)) =
k−1
∑

j=0

(f(Aj) + g(Aj)) .

Therefore,

S(n)− S(5n) =
k−1
∑

j=0

(Aj − f(Aj)− g(Aj)) .

This proves the lemma. End Proof of Lemma

Given a digit A, define f(A) to be the tens-digit of 5A and g(A) be the ones-digit of 5A. Note
that

A A− f(A)− g(A)

0 0

1 −4

2 1

3 −3

4 2

5 −2

6 3

7 −1

8 4

9 0

The value of A − f(A) − g(A) is maximized when A = 8. Hence, to determine the mini-
mum value of n such that S(n) − S(5n) = 2013, from the Lemma, we need to ensure that
as many digits of n is 8 as possible. Since 8 − f(8) − g(8) = 4, from the Lemma, n must
have at least ⌈2013/4⌉ = 504 digits. We claim that this is indeed the minimum number of
digits by constructing a positive integer n with 504 digits that satisfies S(n)−S(5n) = 2013.
Each occurrence of 8 in n contributes a value of 4 to the expression S(n) − S(5n). Since
2013 ≡ 1 (mod 4), a value of 1 is unaccounted for. From the previous table, note that
2 − f(2) − g(2) = 1. Hence, any positive integer n with 504 digits, consisting of one 2 and
503 8′s, will satisfy S(n)− S(5n) = 2013.

Therefore, the answer is 504.
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6 Let x, y, z be real numbers that are greater than or equal to 0 and less than or equal to 1
2 .

(a) Determine the minimum possible value of

x+ y + z − xy − yz − zx

and determine all triples (x, y, z) for which this minimum is obtained.

(b) Determine the maximum possible value of

x+ y + z − xy − yz − zx

and determine all triples (x, y, z) for which this maximum is obtained.

Solution to (a): Note that x + y + z − xy − yz − zx = x(1 − y) + y(1 − z) + z(1 − x) ≥ 0
since x, y, z ≤ 0 and 0 < 1− x, 1− y, 1− z ≤ 1. This proves the inequality.

We now determine the equality case. For equality to hold, each of x(1− y), y(1− z), z(1− x)
must equal 0. Note that x(1−y) = 0 if and only if x = 0. (Note that y 6= 1 since 0 ≤ y ≤ 1/2.)
Similarly, y(1− z) = 0 if and only if y = 0. z(1− x) = 0 if and only if z = 0. Hence, equality
holds if and only if (x, y, z) = (0, 0, 0). �

Solution 1 to (b): Let a = 1/2 − x, b = 1/2 − y, c = 1/2 − z. Note that 0 ≤ a, b, c ≤ 1/2.
Then x+ y + z − xy − yz − zx =

3/2− (a+ b+ c)− (3/4− a− b− c+ ab+ bc+ ca) = 3/4− (ab+ bc+ ca) ≤ 3/4,

since a, b, c ≥ 0. Equality holds if and only if ab = bc = ca = 0. This holds if at least two
of a, b, c are equal to zero. Therefore, equality holds in the original equation if and only if at
least two of x, y, z equal 1/2. �

Solution 2 to (b): Let S = x + y + z − xy − yz − zx. Note that S is symmetric with
respect to x, y, z. Hence, we may assume without loss of generality that x ≤ y ≤ z. We
can rewrite S as x(1 − y − z) + y + z − yz. Note that 0 ≤ 1 − y − z ≤ 1. If y + z 6= 1
and x < 1/2, then increasing x will strictly increase S. If x = 1/2, then since x ≤ y ≤ z,
(x, y, z) = (1/2, 1/2, 1/2), in which case S = 3/4. Finally, if y + z = 1, then y = z = 1/2,
since y, z ≤ 1/2. Hence, S = y + z − yz = 3/4. Therefore, in both cases, the maximum
possible value of S is 3/4. Hence, the maximum possible value of S is indeed 3/4. In both
cases, equality holds if and only if y = z = 1/2. Therefore, S = 3/4 if and only if two of
x, y, z is equal to 1/2. �
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7 Consider the following layouts of nine triangles with the letters A,B,C,D,E, F,G,H, I in its
interior.

A

B C D

E F G H I

A sequence of letters, each letter chosen from A,B,C,D,E, F,G,H, I is said to be triangle-

friendly if the first and last letter of the sequence is C, and for every letter except the first
letter, the triangle containing this letter shares an edge with the triangle containing the
previous letter in the sequence. For example, the letter after C must be either A,B or D.
The sequence CBFBC is triangle-friendly, but the sequences CBFGH and CBBHC are
not.

(a) Determine the number of triangle-friendly sequences with exactly 2012 letters.

(b) Determine the number of triangle-friendly sequences with exactly 2013 letters.

Solution to (a): Color the triangles C,F,H red and the remaining triangles blue. Note
that in any triangle-friendly sequence, the color of the letters alternate between red and blue.
Since C is the first letter of any triangle-friendly sequence, the first letter of any triangle-
friendly sequence is red. By parity, the odd numbered letters in such a sequence are red and
the even numbered letters in such a sequence are blue. Therefore, the 2012th letter of any
triangle-friendly sequence must be blue, and therefore cannot be C. Hence, there are zero
triangle-friendly sequences with exactly 2012 letters.

Solution to (b): Define a triangle sequence to be a sequence with the same properties as a
triangle-friendly sequence, but with the condition that the final letter can be any letter. Note
that triangle-friendly sequences are also triangle sequences.

Using the same argument in (a), the odd-numbered terms of a triangle sequence must be
C,F or H. Therefore, an odd-lengthered triangle sequence must end in C,F or H For any
non-negative integer n, let Cn, Fn, Hn be the number of triangle sequences of length 2n + 1
that end of C,F,H, respectively. We need to determine C1006. Note that Cn + Fn + Hn is
the total number of triangle sequences of length 2n+ 1.

By symmetry, note also that Fn = Hn for all non-negative integer n.
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We first determine the total number of triangle sequences of length 2n + 1. We denote this
quantity by Tn. Clearly, T0 = 1, since C is the only triangle sequence of length 1. Inductively,
given a triangle sequence of length 2n + 1, the first 2n − 1 letters form a triangle sequence
of length 2n− 1. By rotational symmetry, suppose the third last letter of the sequence is C.
Then there are five ways to proceed from this letter, namely CAC,CBC,CDC,CBF,CDF .
Hence, there are five times as many triangle sequences of length 2n+1 than triangle sequences
of length 2n− 1. Since T0 = 1, Tn = 5n.

We now determine recurrence relations between Cn, Fn, Hn. Consider a triangle sequence of
length ≥ 3, that ends in C. The third last letter of such a sequence is C,F,H. If this letter
is C, then there are three ways, namely CAC,CBC,CDC, for the sequence to end in C. If
this letter is F or H, then there is one way, namely FBC or HDC, for the sequence to end
in C. Therefore,

Cn = 3Cn−1 + Fn−1 +Hn−1 = 3Cn−1 + 2Fn−1.

But we also know that Cn + 2Fn = Tn = 5n. Therefore, Fn = (5n − Cn)/2. Hence,

Cn = 3Cn−1 + 2 ·
5n−1 − Cn−1

2
= 2Cn−1 + 5n−1.

Using this recurrence relation, with the initial condition C0 = 1, we will determine a general
formula for Cn. Since we need to determine the number of triangle-friendly sequences of
length 2013, we need to determine C1006.

We claim that

Cn =
2n+1 + 5n

3
,

for all non-negative integers n. We will prove this by induction on n. This is true for n = 0,
since (21 + 50)/3 = 1, which is indeed equal to C0. Now suppose Cm = 2m+1+5m

3 for some
non-negative integer m. Then

Cm+1 = 2Cm + 5m = 2

(

2m+1 + 5m

3

)

+ 5m =
2m+2 + 2 · 5m + 3 · 5m

3
=

2m+2 + 5m+1

3
,

which completes the induction proof.

Hence, the number of triangle-friendly sequences with length 2013 is

C1006 =
21007 + 51006

3
.
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8 Let △ABC be an acute-angled triangle with orthocentre H and circumcentre O. Let R be
the radius of the circumcircle.

Let A′ be the point on AO (extended if necessary) for which HA′ ⊥ AO.
Let B′ be the point on BO (extended if necessary) for which HB′ ⊥ BO.
Let C ′ be the point on CO (extended if necessary) for which HC ′ ⊥ CO.

Prove that HA′ +HB′ +HC ′ < 2R.

(Note: The orthocentre of a triangle is the intersection of the three altitudes of the triangle.
The circumcircle of a triangle is the circle passing through the triangle’s three vertices. The
circumcentre is the centre of the circumcircle.)

Solution: Since ∆ABC is an acute-angled triangle, H and O lie in the interior of ∆ABC.
By symmetry, we may assume without loss of generality that H lies in or on the boundary of
∆OBC.

We will denote the area of a triangle XY Z by [XY Z]. Since H lies within or on ∆OBC,

[OHB] + [OHC] ≤ [OBC].

We now consider these three quantities. Note that

[OBC] =
1

2
×OB ×OC × sin∠BOC ≤

1

2
×R×R× 1 =

R2

2
.

Note also that

[OHB] =
1

2
×OB ×HB′ =

1

2
×R×HB′.

Similarly,

[OHC] =
1

2
×R×HC ′.

Combining these three equations / inequalities yield

HB′ +HC ′ ≤ R.

Hence, to show that HA′ +HB′ +HC ′ < 2R, it suffices to show that HA′ < R.

Note that HA′ ≤ HO, since A′ is the foot of the perpendicular from H on OA. Since H lies
in the interior of ∆ABC, H also lies in the interior of the circumcircle of ∆ABC, implying
that OH is strictly shorter than the radius of the circumcircle of ∆ABC. In other words,
HO < R. Therefore, HA′ < R.

This proves the inequality. �
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