Problems



- 1. Suppose that a, b and x are positive real numbers. Prove that  $\log_{ab} x = \frac{\log_a x \log_b x}{\log_a x + \log_b x}$ .
- 2. Two tangents AT and BT touch a circle at A and B, respectively, and meet perpendicularly at T. Q is on AT, S is on BT, and R is on the circle, so that QRST is a rectangle with QT = 8 and ST = 9. Determine the radius of the circle.
- 3. Prove that there is no real number x satisfying both equations

$$2^{x} + 1 = 2 \sin x$$
  
 $2^{x} - 1 = 2 \cos x$ 

- 4. Determine the smallest positive integer m with the property that  $m^3 3m^2 + 2m$  is divisible by both 79 and 83.
- 5. The Fibonacci sequence is defined by  $f_1 = f_2 = 1$  and  $f_n = f_{n-1} + f_{n-2}$  for  $n \ge 3$ . A Pythagorean triangle is a right-angled triangle with integer side lengths. Prove that  $f_{2k+1}$  is the hypotenuse of a Pythagorean triangle for every positive integer k with  $k \ge 2$ .
- 6. There are 15 magazines on a table, and they cover the surface of the table entirely. Prove that one can always take away 7 magazines in such a way that the remaining ones cover at least  $\frac{8}{15}$  of the area of the table surface.
- 7. If (a, b, c) is a triple of real numbers, define
  - g(a, b, c) = (a + b, b + c, c + a), and
  - $g^n(a, b, c) = g(g^{n-1}(a, b, c))$  for  $n \ge 2$ .

Suppose that there exists a positive integer n so that  $g^n(a, b, c) = (a, b, c)$  for some  $(a, b, c) \neq (0, 0, 0)$ . Prove that  $g^6(a, b, c) = (a, b, c)$ .

8. Consider three parallelograms  $P_1$ ,  $P_2$ ,  $P_3$ . Parallelogram  $P_3$  is inside parallelogram  $P_2$ , and the vertices of  $P_3$  are on the edges of  $P_2$ . Parallelogram  $P_2$  is inside parallelogram  $P_1$ , and the vertices of  $P_2$  are on the edges of  $P_1$ . The sides of  $P_3$  are parallel to the sides of  $P_1$ . Prove that one side of  $P_3$  has length at least half the length of the parallel side of  $P_1$ .