PROBLEM 1

Evaluate the sum

$$\sum_{n=1}^{1994} (-1)^n \frac{n^2 + n + 1}{n!}$$

PROBLEM 2

Show that every positive integral power of $\sqrt{2} - 1$ is of the form $\sqrt{m} - \sqrt{m-1}$ for some positive integer m. (e.g. $(\sqrt{2} - 1)^2 = 3 - 2\sqrt{2} = \sqrt{9} - \sqrt{8}$).

PROBLEM 3

Twenty-five men sit around a circular table. Every hour there is a vote, and each must respond *yes* or *no*. Each man behaves as follows: on the n^{th} vote, if his response is the same as the response of at least one of the two people he sits between, then he will respond the same way on the $(n + 1)^{th}$ vote as on the n^{th} vote; but if his response is different from that of both his neighbours on the *n*-th vote, then his response on the (n + 1)-th vote will be different from his response on the n^{th} vote, there will be a time after which nobody's response will ever change.

PROBLEM 4

Let AB be a diameter of a circle Ω and P be any point *not* on the line through A and B. Suppose the line through P and A cuts Ω again in U, and the line through P and B cuts Ω again in V. (Note that in case of tangency U may coincide with A or V may coincide with B. Also, if P is on Ω then P = U = V.) Suppose that |PU| = s|PA| and |PV| = t|PB| for some nonnegative real numbers s and t. Determine the cosine of the angle APB in terms of s and t.

PROBLEM 5

Let ABC be an acute angled triangle. Let AD be the altitude on BC, and let H be any interior point on AD. Lines BH and CH, when extended, intersect AC and AB at E and F, respectively. Prove that $\angle EDH = \angle FDH$.