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A1 Determine the positive integer n such that 84 = 4n.

Solution: The answer is n = 6.

Solution 1: Note that 84 = (23)4 = 212 = 46. Therefore, n = 6. �

Solution 2: We write 84 and 4n as an exponent with base 2.

84 = 4n

(23)4 = (22)n

212 = 22n

Therefore, 2n = 12. Hence, n = 6. �

Solution 3: Note that 84 = (82)2 = 642 = 4096. Hence, 4n = 4096. We check each positive
integer n starting from 1.

n 4n

1 4

2 16

3 64

4 256

5 1024

6 4096

All positive integers n > 6 yield a value of 4n larger than 4096. Therefore, n = 6. �
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A2 Let x be the average of the following six numbers: {12, 412, 812, 1212, 1612, 2012}. Determine
the value of x.

Solution: The answer is x = 1012.

Solution 1: The sum of the first and sixth terms is 2024. The sum of the second and fifth
terms is 2024 and the sum of the third and fourth terms is 2024. Hence, the sum of the six
terms is 2024× 3. Hence, the average of the six terms is

2024× 3

6
=

2024

2
= 1012. �

Solution 2: The average of the six numbers is

12 + 412 + 812 + 1212 + 1612 + 2012

6

=
0 + 400 + 800 + 1200 + 1600 + 2000

6
+

12 + 12 + 12 + 12 + 12 + 12

6

=
100(4 + 8 + 12 + 16 + 20)

6
+ 12 =

100× 60

6
+ 12 = 1000 + 12 = 1012. �

Solution 3: Note that the sequence is arithmetic.1 Therefore, the average of the six num-
bers is the average of the middle two numbers, which is the halfway point between 812, 1212.
Hence, the answer is 1012. �

1A sequence is said to be arithmetic if successive terms in the sequence have a common difference.
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A3 Let ABCDEF be a hexagon all of whose sides are equal in length and all of whose angles
are equal. The area of hexagon ABCDEF is exactly r times the area of triangle ACD.
Determine the value of r.

F

A B

C

DE

Solution 1: The answer is r = 3.

Divide the hexagon into six regions as shown, with the centre point denoted by P .

F

A B

C

DE

P

This is possible since the hexagon is regular. By symmetry, note that PA = PB = PC =
PD = PE = PF and the six interior angles about P are equal. Then since the sum of the
six interior angles about P sum to 360◦,

∠APB = ∠BPC = ∠CPD = ∠DPE = ∠EPF = ∠FPA = 60◦.

Therefore, the six triangles ∆PAB,∆PBC,∆PCD,∆PDE,∆PEF,∆PFA are all equilat-
eral and have the same area. Let K be the area of any one of these triangles. Therefore, the
hexagon has area 6K.

Note that the area of ∆ACD is equal to the area of ∆PCD plus the area of ∆PAC. Since
∆PAB,∆PBC are both equilateral, PA = AB and PC = CB. Therefore, triangles ∆BAC
and ∆PAC are congruent and hence have the same area. Note that the area of ∆PAC plus
the area of ∆BAC is the sum of the areas of the equilateral triangles ∆PAB and ∆PBC,
which is 2K. Therefore, ∆PAC has area K. We already noted that the area of ∆ACD is
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equal to the area of ∆PCD plus that of ∆PAC. This quantity is equal to K + K = 2K.
Hence, the area of ABCDEF is 6K/2K = 3 times the area of ∆ACD. The answer is 3. �

Solution 2: Divide the hexagon into six regions and define K as in Solution 1. Note
that ∆APC and ∆DPC have a common height, namely the height from C to AD. Since
PA = PD, ∆APC and ∆DPC have the same area, namely K. Therefore, the area of ∆ACD
is the sum of the areas of ∆APC and that of ∆DPC, which is K + K = 2K. Hence, the
ratio of the area of ABCDEF to the area of ∆ACD is 6K/2K = 3. �

Solution 3: The sum of the angles of a hexagon is 180◦ × (6 − 2) = 720◦. Therefore,
∠ABC = 120◦. Since BA = BC, ∠BAC = ∠BCA. Then since the sum of the angles
of ∆ABC is 180◦ and ∠ABC = 120◦, ∠BAC = ∠BCA = 30◦. Since ∠BCA = 30◦ and
∠BCD = 120◦, ∠ACD = 90◦.

F

A B

C

DE

Suppose that each side of the hexagon has length 1. We now determine the length AC to
determine the area of ∆ACD. By the cosine law,

AC2 = BA2+BC2−2 ·BA ·BC · cos∠ABC = 12+12−2 ·1 ·1 · cos 120◦ = 2−2 · (−1/2) = 3.

Therefore, AC =
√
3. Hence, the area of ∆ACD is 1/2 · CD · CA = 1/2 · 1 ·

√
3 =

√
3/2.

We now find the area of the hexagon. As in Solution 1, the hexagon consists of 6 equilateral
triangles each with side 1. The area of each equilateral triangle is

√
3/4. Therefore, the area

of the hexagon is 6 ·
√
3/4 = 3

√
3/2. Therefore, the ratio of the area of the hexagon to the

area of ∆ACD is
3
√
3/2√
3/2

= 3.

Therefore, the answer is 3. �

Solution 4: As in Solution 3, suppose each side of the hexagon has length 1. Then the area
of ∆ACD is

√
3/2. Note that the area of ∆ABC is

1

2
·BA ·BC · sin 120◦ = 1

2
· 1 · 1 ·

√
3

2
=

√
3

4
.
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Therefore, ∆ACD is twice the area of ∆ABC and then ∆ACD is 2/3 the area of the quadri-
lateral ABCD. But the line AD splits the hexagon ABCDEF in half. Therefore, ∆ACD
is 1/3 the area of the entire hexagon. Therefore, the ratio of the area of the hexagon to the
area of ∆ACD is 3. �

Solution 5: We will follow Solution 4, but provide a different way to show that the area
of ∆ACD is twice the area of ∆ABC. Note that these two triangles have a common height
with base AD and BC, respectively. Since AD is twice the length of BC, ∆ACD is twice
the area of ∆ABC. Then as in Solution 4, we can conclude that the ratio of the area of the
hexagon to the area of ∆ACD is 3. �

Solution 6: Join the segment DF . The hexagon is cut into four triangles. By symme-
try, ∆ACD and ∆AFB are congruent, as are ∆ABC and ∆DEF . Note that AD||BC and
FC||BF . Let AD,FC meet at P . Then ∆APC and ∆ABC are congruent (parallelogram
cut by diagonal). ∆APC has half the height of ∆ABC on base ∆AC (by symmetry), so
[ACD] = 2[ABC], where [· · · ] denotes the area of a figure. Similarly, [AFD] = 2[ABC] Thus
the hexagon’s area is [ACD] + [ADF ] + [ABC] + [DEF ] = 6[ABC] = 3[ACD]. Therefore,
the answer is 3. �
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A4 Twelve different lines are drawn on the coordinate plane so that each line is parallel to exactly
two other lines. Furthermore, no three lines intersect at a point. Determine the total number
of intersection points among the twelve lines.
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Solution: The answer is 54.

Solution 1: Since no point lies on three or more lines, the number of intersection points
is equal to the number of pairs of lines that intersect. The total number of pairs of lines is
12× 11/2 = 6× 11 = 66. Each line is parallel to two other lines. Hence, each line is part of
two pairs of lines that do not intersect. Since there are twelve lines, there are 12× 2/2 = 12
pairs of lines that do not intersect. Therefore, there are 66 − 12 = 54 pairs of lines that
intersect. Hence, the answer is 54. �

Solution 2: Since each line is parallel to exactly two other lines, each line is not parallel to
nine other lines. Hence, each line intersects nine other lines.

Since no point lies on three or more lines, each point of intersection lies on exactly two lines.
Combining these two observations yields that the total number of intersection points is

12× 9

2
= 54. �

Solution 3: Recall that two lines are parallel if and only if they have the same slope. Con-
sider the set of slopes of the twelve lines; since each line is parallel to exactly two other lines,
each slope is the slope of three lines among the twelve lines. Hence, there are four different
slopes represented among the twelve lines.
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Since each slope contains three lines, each pair of slopes contains 3 × 3 = 9 points of in-
tersection. There are four different slopes. Hence, the number of pairs of different slopes
is 4 × 3/2 = 6. Since no three lines intersect at a common point, the number of points of
intersection is 9× 6 = 54. �
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B1 Alice and Bob run in the clockwise direction around a circular track, each running at a
constant speed. Alice can complete a lap in t seconds, and Bob can complete a lap in 60
seconds. They start at diametrically-opposite points.

Alice Bob

When they meet for the first time, Alice has completed exactly 30 laps. Determine all possible
values of t.

Solution: The answer is t = 59 or t = 61.

Since Alice ran exactly 30 laps, Bob meets Alice at where Alice started. Since Bob started
diametrically across from Alice, Bob ran n + 1

2
laps for some positive integer n. Since Alice

and Bob meet only the first time they meet, the number of laps that Alice ran and the number
of laps Bob ran cannot differ by more than 1. Therefore, Bob ran either 29.5 laps or 30.5 laps.

Note that Alice and Bob ran for the same amount of time and the number of seconds each
person ran is the number of laps he/she ran times the number of seconds it takes he/she to
complete a lap.

If Bob ran 29.5 laps, then 30t = 29.5× 60. Hence, t = 29.5× 2 = 59.

If Bob ran 30.5 laps, then similarly, 30t = 30.5× 60. Hence, t = 30.5× 2 = 61.

Therefore, t = 59 or t = 61. �
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B2 For each positive integer n, define ϕ(n) to be the number of positive divisors of n. For exam-
ple, ϕ(10) = 4, since 10 has 4 positive divisors, namely {1, 2, 5, 10}.

Suppose n is a positive integer such that ϕ(2n) = 6. Determine the minimum possible value
of ϕ(6n).

Solution: The answer is 8.

Solution 1: Recall that if a positive integer m has prime factorization pe1
1
pe2
2
. . . pet

t
, where

p1, . . . , pt are distinct primes, then the number of positive divisors of m is ϕ(m) = (e1 +
1)(e2 + 1) . . . (et + 1) (*). Note that each term in this product is at least 2.

Since 2n is an even positive integer with 6 positive divisors, 2n = 25, 22 · p or 2 · p2, where p is
some odd prime number. Therefore, n = 24 = 16, 2p or p2. Therefore, 6n = 6× 16 = 96, 12p
or 6p2.

Note that ϕ(96) = ϕ(25 × 31) = 6× 2 = 12.

If p = 3, then ϕ(12p) = ϕ(36) = ϕ(22 × 32) = 3× 3 = 9 and ϕ(6p2) = ϕ(54) = ϕ(21 × 33) =
2× 4 = 8.

It remains to show the case when p > 3. So far the minimum value obtained for ϕ(6n) = 8.
If p > 3, then 6n contains at least 3 different prime divisors. Then by (*), the number of
positive divisors of 6n is at least 2× 2× 2 = 8. Therefore, ϕ(6n) ≥ 8 for all positive integers
n. As we have shown, n = 9 yields ϕ(6n) = 8. Therefore, the answer is 8. �

Solution 2: Note that four positive divisors of 2n are 1, 2, n and 2n. Note also that n = 2
does not satisfy ϕ(2n) = 6. Therefore, n ≥ 2 and consequently, 1, 2, n and 2n are all distinct.

Since 2n has 6 positive divisors, there are two other positive divisors a, b of 2, n, with a, b > 2.
Then the set of positive divisors of 2n is {1, 2, a, b, n, 2n}.

Now consider the positive divisors of 6n. Note that the set of positive divisors of 6n contains
those of 2n. Further note that 3n and 6n are positive divisors of 6n, which are not posi-
tive divisors of 2n. Hence, the set of positive divisors of 6n contains {1, 2, a, b, n, 2n, 3n, 6n}.
Therefore, ϕ(6n) ≥ 8.

We will show that this minimum can be obtained. Since {1, 2, a, b, n, 2n, 3n, 6n} are the posi-
tive divisors of 6n and appear in increasing order, a · 2n = 6n and bn = 6n. Multiplying both
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equations and dividing both sides by 2n2 yield ab = 18. But since {1, 2, a, b, n, 2n} are the
positive divisors of 2n, ab = 2n. Therefore, 2n = 18, from which we can conclude that n = 9
is a candidate which yields ϕ(2n) = 6 and ϕ(6n) = 8.

This can be easily verified, since the positive divisors of 18 are {1, 2, 3, 6, 9, 18}. Since the
positive divisors of 54 are {1, 2, 3, 6, 9, 18, 27, 54}, ϕ(54) = 8. �
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B3 Given the following 4 by 4 square grid of points, determine the number of ways we can label
ten different points A,B,C,D,E, F,G,H, I, J such that the lengths of the nine segments

AB,BC,CD,DE,EF, FG,GH,HI, IJ

are in strictly increasing order.

Solution: The answer is 24.

First, we count the number of possible lengths of the segments. By the Pythagorean The-
orem, the different lengths are

√
02 + 12 = 1,

√
02 + 22 = 2,

√
02 + 32 = 3,

√
12 + 12 =√

2,
√
12 + 22 =

√
5,
√
12 + 32 =

√
10,

√
22 + 22 =

√
8,
√
22 + 32 =

√
13,

√
32 + 32 =

√
18.

These nine lengths are all different. Therefore, all nine lengths are represented among
AB,BC,CD,DE,EF, FG,GH,HI, IJ . Furthermore, these nine lengths in increasing or-
der are:

√

02 + 12 <
√

12 + 12 <
√

02 + 22 <
√

12 + 22 <
√

22 + 22

<
√

02 + 32 <
√

12 + 32 <
√

22 + 32 <
√

32 + 32.

Hence, the longest length must be a segment that goes from one corner to the diagonally-
opposite corner.

We will construct the ten points in the order J, I,H,G, F,E,D,C,B,A.

For simplicity, we place the points on the coordinate plane, with the bottom left corner at
(0, 0) and the top right corner at (3, 3).

Note that J must be a corner of the grid, and there are four such corners. Furthermore, I
must be the diagonally opposite corner from J . Without loss of generality, suppose J = (0, 0).
Then I = (3, 3).

J

I

11
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The point H has the property that HI =
√
32 + 22, i.e. H is a point which is distance three

horizontally from I and distance two vertically from I, or vice versa. By symmetry along the
diagonal JI, there two choices for H, namely (0, 1) or (1, 0). Without loss of generality, sup-
pose H = (1, 0).

J

I

H

The segment GH has length
√
32 + 12. Hence, G is either (0, 3) or (2, 3). But if G = (0, 3)

then F is a point such that FG = 3 =
√
02 + 32. Then F = (0, 0) or (3, 3), which are

already occupied by J, I, respectively. Therefore, G cannot be (0, 3), and thus must be (2, 3).
Consequently, F = (2, 0).

J

I

H

G

F

EF has length
√
8 =

√
22 + 22. Hence, E = (0, 2). DE has length

√
5 =

√
22 + 12. Hence,

D = (2, 1).

J

I

H

G

F

E

D

Then C = (0, 1) and B = (1, 2).

12
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J

I

H

G

F

E

DC

B

From B, there are three remaining points A such that AB = 1, namely (1, 1), (1, 3), (2, 2).

By our construction, the points J,H and A were the only points where there was more than
one choice. Every other point was determined from our construction. There were 4 choices
for J , 2 choices for H and 3 choices for A. Hence, the number of ways to select 10 points
that satisfy the condition given in the problem is 4× 3× 2 = 24. The answer is 24. �
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B4 In the following diagram, two lines that meet at a point A are tangent to a circle at points
B and C. The line parallel to AC passing through B meets the circle again at D. Join the
segments CD and AD. Suppose AB = 49 and CD = 28. Determine the length of AD.

B D

CA

Solution 1: The answer is AD = 63.

Join the segment BC. Since the two lines are both tangent to the circle, AB = AC. There-
fore, ∠ABC = ∠ACB.

B D

CA

Furthermore, since BD is parallel to AC, ∠ACB = ∠DBC. Since AC is tangent to the
circle at C, by the tangent-chord theorem, ∠BDC = ∠ACB. Hence, we have the following
sequence of equal angles:

∠ABC = ∠ACB = ∠CBD = ∠CDB.

Furthermore, AB = AC and CB = CD. Therefore, ∆ABC is similar to ∆CBD. Hence.

AB

BC
=

CB

BD
.

Since AB = 49 and BC = CD = 28, BD = BC2/AB = 282/49 = 42 = 16.

Let M be the foot of the perpendicular from D on AC and N the foot of the perpendicular
on BD from C.

14
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B D

CA M

N

Since CB = CD, N is the midpoint of BD. Since BD is parallel to CM , NDMC is a
rectangle. Therefore, CM = ND = 1

2
·BD = 8. We now determine the length of DM .

DM = NC =
√

DC2 −DN2 =
√

282 − 82 =
√
784− 64 =

√
720.

Therefore,

AD =
√

AM2 +MD2 =
√

(AC + CM)2 +MD2 =
√

(49 + 8)2 + 720 =
√
3969 = 63.

Hence, the answer is 63. �

Solution 2: As in Solution 1, join segment BC and conclude that BC = 28 and BD = 16.
Also as in Solution 1, ∠ABC = ∠ACB = ∠CBD = ∠CDB. Let θ be this angle.

B D

CA

N

θ θ

Let N be the foot of the perpendicular on BD from C. As in Solution 1, N is the midpoint
of BD. Therefore, BN = 8. We can now determine cos θ from ∆CBN , which is

cos θ =
BN

BC
=

8

28
=

2

7
.

(Alternatively, we can use ∆ABC to determine cos θ.) Note that ∠ABD = 2θ. We then
apply the cosine law on ∆ABD to determine AD. By the cosine law, we have

AD2 = BA2 +BD2 −BA ·BD · cos(2θ).

We first determine cos(2θ), which by the double-angle formula is

cos(2θ) = 2 cos2 θ − 1 = 2 · (2/7)2 − 1 = −41/49.

15
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Therefore,

AD2 = 492 + 162 − 2(49)(16)(−41/49) = 2401 + 256 + 2 · 16 · 41 = 3969.

Hence, AD =
√
3969 = 63. �

Solution 3: Let θ be defined as in Solution 2. Then as shown in Solution 2, cos θ = 2/7.
Then note that

∠BCD = 180− ∠CBD − ∠CDB = 180− 2θ.

Therefore, ∠ACD = ∠ACB + ∠BCD = θ + (180− 2θ) = 180− θ. We now apply the cosine
law on ∆ACD.

AD2 = CA2 + CD2 − 2 · CA · CD · cos∠ACD = 492 + 282 − 2 · 49 · 28 · cos(180− θ)

= 2401 + 784 + 2 · 49 · 28 · cos θ = 3185 + 2 · 49 · 28 · 2
7
= 3185 + 4 · 7 · 28 = 3969.

Therefore, AD =
√
3969 = 63. �
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Part C

C1 Let f(x) = x2 and g(x) = 3x− 8.

(a) (2 marks) Determine the values of f(2) and g(f(2)).

(b) (4 marks) Determine all values of x such that f(g(x)) = g(f(x)).

(c) (4 marks) Let h(x) = 3x− r. Determine all values of r such that f(h(2)) = h(f(2)).

Solution:

(a) The answers are f(2) = 4 and g(f(2)) = 4.

Substituting x = 2 into f(x) yields f(2) = 22 = 4.

Substituting x = 2 into g(f(x)) and noting that f(2) = 4 yields g(f(2)) = g(4) =
3 · 4− 8 = 4. �

(b) The answers are x = 2 and x = 6.

Note that
f(g(x)) = f(3x− 8) = (3x− 8)2 = 9x2 − 48x+ 64

and
g(f(x)) = g(x2) = 3x2 − 8.

Therefore, we are solving
9x2 − 48x+ 64 = 3x2 − 8.

Rearranging this into a quadratic equation yields

6x2 − 48x+ 72 = 0 ⇒ 6(x2 − 8x+ 12) = 0.

This factors into 6(x − 6)(x − 2) = 0. Hence, x = 2 or x = 6. We now verify these are
indeed solutions.

If x = 2, then f(g(2)) = f(3(2) − 8) = f(−2) = (−2)2 = 4 and g(f(2)) = 4 by part(a).
Hence, f(g(2)) = g(f(2)). Therefore, x = 2 is a solution.

If x = 6, then f(g(6)) = f(3 · 6− 8) = f(10) = 102 = 100 and g(f(6)) = g(62) = g(36) =
3·36−8 = 108−8 = 100. Hence, f(g(6)) = g(f(6)). Therefore, x = 6 is also a solution. �

17
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(c) The answers are r = 3 and r = 8.

We first calculate f(h(2)) and h(f(2)) in terms of r.

f(h(2)) = f(3 · 2− r) = f(6− r) = (6− r)2

and
h(f(2)) = h(22) = h(4) = 3 · 4− r = 12− r.

Therefore, (6− r)2 = 12− r ⇒ r2 − 12r + 36 = 12− r. Re-arranging this yields

r2 − 11r + 24 = 0,

which factors as
(r − 8)(r − 3) = 0.

Hence, r = 3 or r = 8. We will now verify that both of these are indeed solutions.

If r = 3, then h(x) = 3x − 3. Then f(h(2)) = f(3 · 2 − 3) = f(3) = 9 and h(f(2)) =
h(22) = h(4) = 3 · 4 − 3 = 9. Therefore, f(h(2)) = h(f(2)). Consequently, r = 3 is a
solution. From the result of part (b), we also verified that r = 8 is a solution. �
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C2 We fill a 3 × 3 grid with 0s and 1s. We score one point for each row, column, and diagonal
whose sum is odd.

0 1 1

1 0 1

1 1 0

0 1 1

1 0 1

1 1 1

For example, the grid on the left has 0 points and the grid on the right has 3 points.

(a) (2 marks) Fill in the following grid so that the grid has exactly 1 point. No additional
work is required. Many answers are possible. You only need to provide one.

Solution: Any of the following is a solution:

1

0 1 1

0

101

1 1

1 0 1

0

110

1 1

1 0 1

1

011

0 1

1 1 0

1

101

0

1

0 0

0

0

0

11

1 1

1 1 0

0

000

1 1

0 1 1

1

000

0 1

0 0 0

1

110

0

(b) (4 marks) Determine all grids with exactly 8 points.

Solution: Note that there are three rows, three columns and two diagonals. Hence,
every row, column and diagonal has an odd sum.

We will consider two cases; the first case is when the middle number is 0 and second
case is when the middle number is 1.

Case 1: If the middle number is 0, then let A,B,C,D be the values provided in the
following squares.

19
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0

A B C

D

Then since each row, column and diagonal has an odd sum, each term diametrically
opposite from A,B,C,D has a different value from A,B,C,D, respectively. Denote
0 = 1 and 1 = 0. Then we have the following values in the grid:

0

A B C

D

ABC

D

Note that X + X = 1 for any value X. Then note the sum of A,B,C,A,B,C is
1 + 1 + 1 = 3. Hence, one of A + B + C and A + B + C is even. Therefore, either the
top row or bottom row sum to an even number. Hence, there are no grids with 8 points
in this case.

Case 2: If the middle number is 1, then again, let A,B,C,D be the values provided in
the following squares.

1

A B C

D

Then since each row, column and diagonal has an odd sum, each term diagonally oppo-
site from A,B,C,D has the same value as A,B,C,D, respectively. Then we have the
following values in the grid:

1

A B C

D

ABC

D

Since A+B + C and A+D + C are both odd, B = D.

1

A B C

B

ABC

B

20
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Hence, the only remaining restriction is that A + B + C is odd. Since A,B,C = 0 or
1, A+ B + C = 1 or 3. The only triples (A,B,C) that give this result are (A,B,C) =
(1, 0, 0), (0, 1, 0), (0, 0, 1) or (1, 1, 1). The following are the grids corresponding to these
results, which completes the problem. �

1

1 0 0

0

100

0 1

0 1 0

1

010

1 1

0 0 1

0

001

0 1

1 1 1

1

111

1

(c) (4 marks) Let E be the number of grids with an even number of points, and O be the
number of grids with an odd number of points. Prove that E = O.

Solution 1: Consider the set of all grids. Pair the grids so that each grid G is paired
with the grid G∗ formed by switching the top-left number of G. (By switching, we mean
if the top left number of G is 0, we switch it to a 1. If the top left number of G is 1, we
switch it to a 0.) The following is an example of the action provided by G∗.

G = 1

0 0 1

1

101

1 G∗ = 1

1 0 1

1

101

1

Note that the sum of the elements in the top row, the left most column and the diagonal
going from the top-left to the bottom-right switches parity, i.e. switches either from odd
to even, or even to odd and the sum of the elements of the other rows / columns /
diagonals remain unchanged. Hence, the total number of rows/columns/diagonals which
have odd sum in G and G∗ differ by an odd number. Hence, exactly one of G,G∗ has an
even number of points and the other has an odd number of points. Since each grid lies
in exactly one pair, there is the same number of grids with an even number of points as
grids with an odd number of points, i.e. E = O. �

Comment: The solution also applies if we switch any one of the four corners of the grid.

Solution 2: Note that the grid consisting of all zeros has an even number of points,
namely zero. Note that for any grid, switching the centre square keeps the parity of the
number of points the same. Switching any of the four side squares keeps the parity of
the number of points the same. As in Solution 1, switching the centre changes the parity
of the number of points the same.

Therefore, if a grid has 0, 2 or 4 of its corners as 1, then the number of points of the grid
is even. If a grid has 1 or 3 of its corner as 1, then number of points in the grid is odd.
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We will count the number of grids of based on the number of corner squares containing 1.

There are five non-corner squares. Therefore, there are 25 grids with zero corners con-
taining 1.

There are
(

4

1

)

= 4 ways to choose one corner to be 1. Therefore, there are 4 × 25 grids

with one corner containing 1. Similarly, there are
(

4

2

)

×25 = 6×25 grids with two corners

containing 1,
(

4

3

)

× 25 = 4 × 25 grids with three corners containing 1 and 25 grids with
four corners containing 1.

Hence, there are 25(1 + 6 + 1) = 8 × 25 grids with an even number of points and
25(4+ 4) = 8× 25 grids with an odd number of points. Therefore, E = O, as desired. �
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C3 Let ABCD be a parallelogram. We draw in the diagonal AC. A circle is drawn inside ∆ABC
tangent to all three sides and touches side AC at a point P .

A B

CD

P

(a) (2 marks) Prove that DA+AP = DC + CP .

Solution: Let the circle inside ∆ABC touch AB,BC at X,Y , respectively.

A B

CD

P

X

Y

Then by equal tangents, we have

DA+AP = DA+AX = DA+AB −BX

and
DC + CP = DC + CY = DC + CB −BY.

By equal tangents, we have BX = BY . Since opposite sides of a parallelogram have
equal lengths, AB = DC and DA = CB. Therefore, DA+AB−BX = DC+CB−BY .
Consequently, DA+AP = DC + CP , as desired. �

(b) (4 marks) Draw in the line DP . A circle of radius r1 is drawn inside ∆DAP tangent to
all three sides. A circle of radius r2 is drawn inside ∆DCP tangent to all three sides.
Prove that

r1
r2

=
AP

PC
.
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Solution 1: Consider the triangles ∆APD and ∆CPD and note that the heights of
these triangles to side AP,PC are the same. Therefore,

AP

PC
=

[APD]

[CPD]
,

where [· · · ] denotes area.

O

Q R

S

Given any triangle QRS with a circle on the inside touching all three sides, let O be the
centre of the circle and r the radius of the circle. Then the distance from O to each of
the sides QR,RS, SQ is the same, and is the radius of the circle. Join OQ,OR,OS.

O

Q R

S

..............

....
....

....
....

....

...
...
...
...
...

..

..

..

..

..

.

............

...........

r

rr

Then

[QRS] = [OQR] + [ORS] + [OSQ] =
r ·QR

2
+

r ·RS

2
+

r · SQ
2

=
r

2
· (QR+RS + SQ) =

r

2
· (Perimeter of ∆QRS) .

Then
[APD] =

r1
2

· (Perimeter of ∆APD)

and
[CPD] =

r2
2

· (Perimeter of ∆CPD)

Then
AP

PC
=

[APD]

[CPD]
=

r1
r2

· Perimeter of ∆APD

Perimeter of ∆CPD
.

Hence, to prove that AP/PC = r1/r2, it suffices to show that ∆APD,∆CPD have the
same perimeter.
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By part (a), we haveDA+AP = DC+CP . The perimeter of ∆APD isDA+AP+PD =
DC + CP + PD, which is the perimeter of ∆CPD. This solves the problem. �

Solution 2: Let X,Y, Z be the centres of the circles inside ∆ABC, ∆APD and ∆CPD,
respectively,M the point where the circle inside ∆ADP touch AC andN the point where
the circle inside ∆CDP touch AC. Note that XP , YM and ZN are each perpendicular
to AC.

A B

CD

P

X

Y

Z

. . . . . . . . . . . . . . . . . . . . . . . . .................

.............

. . . . . . . . . . . .

..
..
..
..
.

..
..
..

..........

M

N

Note also that AY bisects ∠DAC, CZ bisects ∠DCA, AX bisects ∠BAC and CX
bisects ∠BCA. Since AD is parallel to BC, ∠DAC = ∠BCA. Therefore, ∠CAY =
∠ACX, which implies that ∠MAY = ∠PCX. Since ∆AYM and ∆CXP are both
right-angled triangles, ∆AYM ∼ ∆CXP . Similarly, ∆CZN ∼ ∆AXP . Therefore,

AM

MY
=

CP

PX
, and

CN

NZ
=

AP

PX
.

Note that MY = r1 and NZ = r2. This yields

AM

r1
=

CP

PX
, and

CN

r2
=

AP

PX
.

Dividing the second equation by the first equation yields

AP

PC
=

AM

CN
· r1
r2
.

Therefore, to solve the problem, it suffices to show that AM = CN .

A B

CD

P

X

Y

Z

. . . . . . . . . . . . . . . . . . . . . . . . .................

.............

. . . . . . . . . . . .

..
..
..
..
.

..
..
..

..........

M

N

R

S
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Let the circle inside ∆DAP touch AD,DP at R,S, respectively. Then note that
AR = AM,DR = DS and PM = PS. Therefore, DA+AP = DR+RA+AM+MP =
DS + AM + AM + SP = 2AM + DP . Similarly, DC + CP = 2CN + DP . By part
(a), DA+ AP = DC + CP . Therefore, 2AM +DP = 2CN +DP , from which we can
conclude that AM = CN . This solves the problem. �

(c) (4 marks) Suppose DA+DC = 3AC and DA = DP . Let r1, r2 be the two radii defined
in (b). Determine the ratio r1/r2.

Solution: The answer is r1/r2 = 4/3.

Solution 1: By part (b). r1/r2 = AP/PC. Let x = AP and y = PC. The answer is
the ratio x/y.

By part (a), DA+AP = DC +CP . Let s = DA+AP = DC +CP . Then DA = s− x
and DC = s − y. Since DA + DC = 3AC, (s − x) + (s − y) = 3(x + y). Hence,
2s = 4(x + y). Therefore, s = 2(x + y). Therefore, DA = x + 2y and DC = 2x + y.
Since DP = DA, DP = x+ 2y.

A

CD

P

M

Drop the perpendicular from D to AC and let the perpendicular intersect AC at M .
Since DA = DP , M is the midpoint of AP . Therefore, MP = x/2. By the Pythagorean
Theorem, we have MD2 +MC2 = DC2 and MD2 +MP 2 = DP 2. Therefore, DC2 −
MC2 = DP 2 −MP 2. Therefore,

(2x+ y)2 − (x/2 + y)2 = (x+ 2y)2 − (x/2)2.

Simplifying this yields

4x2 + 4xy + y2 − x2

4
− xy − y2 = x2 + 4xy + 4y2 − x2

4
.
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Hence, 3x2 − xy − 4y2 = 0. Factoring this yields (3x − 4y)(x + y) = 0. Since x, y are
lengths, x+ y 6= 0. Therefore, 3x− 4y = 0. Therefore, x/y = 4/3. �

Solution 2: We define x, y as in Solution 1. Then we haveDA = x+2y andDC = 2x+y
and DP = x+ 2y. Consider triangles ∆ADP and ∆CDP . Then

cos∠APD =
PA2 + PD2 −AD2

2 · PA · PD
=

x2 + (x+ 2y)2 − (x+ 2y)2

2 · x · (x+ 2y)
=

x2

2x(x+ 2y)
=

x

2(x+ 2y)

and

cos∠CPD =
PC2 + PD2 − CD2

2 · PC · PD
=

y2 + (x+ 2y)2 − (2x+ y)2

2 · y · (x+ 2y)
=

−3x2 + 4y2

2y(x+ 2y)
.

Since ∠APD and ∠CPD sum to 180◦, their cosine values are negatives of each other.
Hence,

−x

2(x+ 2y)
=

−3x2 + 4y2

2y(x+ 2y)
⇒ −x =

−3x2 + 4y2

y
.

This simplifies to 3x2 − xy − 4y2 = 0. Factoring this yields (3x− 4y)(x+ y) = 0. As in
Solution 1, we get x/y = 4/3. �

Solution 3: We define x, y as in Solution 1. Then we haveDA = x+2y andDC = 2x+y
and DP = x+ 2y. We now determine cos∠DAP using cosine law in both ∆DAP and
∆DAC.

cos∠DAP =
AD2 +AP 2 −DP 2

2 ·AD ·AP

=
(x+ 2y)2 + x2 − (x+ 2y)2

2 · (x+ 2y) · x =
x2

2x(x+ 2y)
=

x

2(x+ 2y)

and

cos∠DAC =
AD2 +AC2 −DC2

2 ·AD ·AC

=
(x+ 2y)2 + (x+ y)2 − (2x+ y)2

2 · (x+ 2y)(x+ y)
=

−2x2 + 2xy + 4y2

2(x+ 2y)(x+ y)
=

−(x− 2y)(x+ y)

(x+ 2y)(x+ y)
=

−x+ 2y

x+ 2y
.

Therefore,
x

2(x+ 2y)
=

−x+ 2y

x+ 2y
.

Hence, x = 2(−x+ 2y). This simplifies to x/y = 4/3. �
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C4 For any positive integer n, an n-tuple of positive integers (x1, x2, · · · , xn) is said to be super-

squared if it satisfies both of the following properties:

(1) x1 > x2 > x3 > · · · > xn.

(2) The sum x2
1
+ x2

2
+ · · ·+ x2

k
is a perfect square for each 1 ≤ k ≤ n.

For example, (12, 9, 8) is super-squared, since 12 > 9 > 8, and each of 122, 122 + 92, and
122 + 92 + 82 are perfect squares.

(a) (2 marks) Determine all values of t such that (32, t, 9) is super-squared.

Solution: The only answer is t = 24.

Note that 322 + t2 = 1024 + t2 and 322 + t2 + 92 = 1105 + t2 are perfect squares. Then
there exist positive integers a, b such that

1024 + t2 = a2

1105 + t2 = b2.

Subtracting the first equation from the second equation gives

b2 − a2 = 81 ⇒ (b− a)(b+ a) = 81.

The only ways 81 can be written as the product of two distinct positive integers is
81 = 1× 81 and 81 = 3× 27.

If (b− a, b+ a) = (1, 81), then b− a = 1 and b+ a = 81. Summing these two equations
yield 2b = 82. Therefore, b = 41. Hence, a = 40. Therefore, t2 = a2− 322 = 402− 322 =
82(52 − 42) = 82 · 32. Hence, t = 24.

We now verify that (32, 24, 9) is indeed super-squared. Clearly, the tuple is strictly de-
creasing, i.e. satisfies condition (1). Finally, 322 + 242 = 82(42 + 32) = 82 · 52 = 402 and
322+242+92 = 402+92 = 1681 = 412. Therefore, the tuple also satisfies condition (2).

If (b−a, b+a) = (3, 27), then b−a = 3 and b+a = 27. Summing these two equations gives
2b = 30. Therefore, b = 15. Hence, a = 12. Therefore, t2 = a2 − 322 = 122 − 322 < 0.
Hence, there are no solutions for t in this case.

Therefore, t = 24 is the only solution.

(b) (2 marks) Determine a super-squared 4-tuple (x1, x2, x3, x4) with x1 < 200.

28



COMC 2012 Official Solutions 29

Solution: Note that if (x1, · · · , xn) is super-squared, then (ax1, · · · , axn) is also super-
squared for any positive integer a. We will show that this tuple satisfies both (1)
and (2) to show that it is indeed super-squared. Clearly, since x1 > x2 > · · · > xn,
ax1 > ax2 > · · · axn. Since x21+x2

2
+· · ·+x2

k
is a perfect square, x2

1
+x2

2
+· · ·+x2

k
= m2 for

some positive integer m. Therefore, (ax1)
2+· · ·+(axk)

2 = (am)2. Hence, (ax1, · · · , axn)
is super-squared.

From the example in the problem statement, (12, 9, 8) is super-squared. Therefore,
12(12, 9, 8) = (144, 108, 96) is also super-squared. Note that 122 +92 +82 = 172. Hence,
1442 + 1082 + 962 = 2042 = 122 · 172.

Note that 132 · 172 = (122 + 52) · 172 = 122 · 172 + 52 · 172 = 122 · 172 + 852. Therefore,
2212 = 132 × 172 = 1442 + 1082 + 962 + 852. And so we conclude that (144, 108, 96, 85)
is super-squared.

Comment: The list of all super-squared 4-tuples (x1, x2, x3, x4) with x1 < 200 is

(132, 99, 88, 84), (144, 108, 75, 28), (144, 108, 96, 85), (156, 117, 104, 60), (180, 96, 85, 60),

(180, 135, 120, 32), and (192, 144, 100, 69).

(c) (6 marks) Determine whether there exists a super-squared 2012-tuple.

Solution: There does indeed exist a super-squared 2012-tuple.

We will show that there exists a super-squared n-tuple for any positive integer n ≥ 3.
We will prove this by induction on n. In the problem statement and in part (b), we
showed that this statement holds for n = 3, 4.

Suppose there exists a super-squared k-tuple (x1, x2, · · · , xk) for some positive integer
k ≥ 3. We will show from this k-tuple that there exists a super-squared (k + 1)-tuple.

Let a, b, c be a tuple of positive integers such that a2 + b2 = c2. We will provide the
additional conditions on (a, b, c) shortly.

Let r be the positive integer such that x2
1
+ x2

2
+ · · · + x2

k
= r2. As in part (b), we

note that if (x1, · · · , xk) is super-squared, then (ax1, · · · , axk) is also super-squared and
(ax1)

2+· · ·+(axk)
2 = (ar)2. Then we claim that (ax1, · · · , axk, br) satisfies property (2)

of super-squared. Clearly, (ax1)
2 + · · ·+ (axt)

2 is a perfect square, since (ax1, · · · , axk)
is super-squared, for all 1 ≤ t ≤ k. To prove the claim, it remains to show that
(ax1)

2+ · · ·+(axk)
2+(br)2 is a perfect square. This is clear since this quantity is equal
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to (ar)2 + (br)2 = r2(a2 + b2) = (cr)2. This proves the claim.

To make the tuple (ax1, · · · , axk, br) super-squared, we require that axk > br, or equiv-
alently, a/b > r/xk. Note that r, xk are determined from the tuple (x1, · · · , xk). Hence,
it suffices to show that there exists a Pythagorean triple (a, b, c), with a2 + b2 = c2 such
that a/b > r/xk. In general, we need to show that a/b can be arbitrarily large.

Note that (a, b, c) = (m2−1, 2m,m2+1) is a Pythagorean triple for any positive integer
m. This is clear since (m2−1)2+(2m)2 = m4−2m2+1+4m2 = m4+2m2+1 = (m2+1)2.
In such a case,

a

b
=

m2 − 1

2m
=

m

2
− 1

2m
>

m

2
− 1,

which can be made arbitrarily large. This completes the induction proof. �
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