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Comments on the Paper 
 

Part A 
 

1. An operation “∆ ” is defined by a ∆b =1–
a
b

, b ≠ 0. 

 What is the value of 1∆ 2( )∆ 3∆ 4( )? 

 
 Solution 

By the definition of “∆ ” 

 
1∆ 2 =1– 1

2
= 1

2

3∆ 4 =1– 3
4

= 1
4

 

and so 1∆ 2( )∆ 3∆ 4( ) = 1
2

 
 

 
 ∆

1
4

 
 

 
 =1–

1
2
1
4

=1– 2 = –1 

    ANSWER: –1 
 
 
2. The sequence  9, 18, 27, 36, 45, 54, … consists of successive multiples of 9.  This sequence is then altered by multiplying 

every other term by –1, starting with the first term, to produce the new sequence  –9, 18, – 27, 36, – 45, 54,... .  If the sum 
of the first n terms of this new sequence is 180, determine n. 

 
 Solution 
 The terms in the sequence are paired, by combining each odd-numbered term with the next term  
 (that is, we combine terms 1 and 2, 3 and 4, 5 and 6, etc). 
 
 The sum of each of these pairs is 9. 
 
 So we need 20 of these pairs to reach a sum of 180. 
 
 Thus we need 2 ×20  or 40 terms. 
    ANSWER: 40 
 



 
3. The symbol n! is used to represent the product n n –1( ) n – 2( )  … 3( ) 2( ) 1( ) . 
 For example,4!= 4 3( ) 2( )1( ) .  Determine n such that n!= 215( )36( )53( )72( )11( ) 13( ) . 

 
 Solution 
 Since n! has a prime factor of 13, n must be at least 13. 
 Since n! has no prime factor of 17, n must be less than 17. 
 These two facts are true because if m ≤ n , then m divides n!. 
 Since n! has 53  as a factor, then n ≥ 15 , since we need n! to have 3 factors which are multiples of 5. 
 We must thus determine if n =15 or n =16. 
 So we look at the number of factors of 2 in 16!. 
 16! gets 1 factor of 2 each from 2, 6, 10, 14 
  2 factors of 2 each from 4, 12 
  3 factors of 2 from 8 
  4 factors of 2 from 16 
 We have a total of 15 twos which then corresponds to n =16. 
    ANSWER: 16 
 
 
4. The symbol x   means the greatest integer less than or equal to x.  For example, 
 
  5.7  = 5, π  =3  and 4  = 4 . 

 Calculate the value of the sum 
 
  1 + 2 + 3 + 4 +  … + 48 + 49 + 50 . 

 
 Solution 
 We note that for k a positive integer and k 2 ≤ n < k +1( )2 , then k ≤ n < k +1 and so n = k . 

 Thus for   1 ≤ n ≤ 3, n =1 

  
4 ≤ n ≤ 8, n = 2

9 ≤ n ≤ 15, n = 3
 

             etc. 
 So the sum equals   
  1+1+1( )+ 2 +2 +2 + 2 +2( )+  (3 + … + 3) + … + (6 + … + 6) + (7 + 7) 

  
= 3 1( )+5 2( )+ 7 3( )+9 4( )+11 5( )+13 6( )+2 7( )
= 3 +10 +21+ 36+ 55+ 78+14
= 217

 

       ANSWER: 217 
 
 
5. How many five-digit positive integers have the property that the product of their digits is 2000?  
 
 Solution 
 Let a five-digit number have the form a b c d e where 0 ≤ a, b, c, d, e ≤ 9, a ≠ 0 . 
 Since the product of the digits is 2000, we must have the product abcde =2000 = 2453 . 



 
 Since the product of the digits is 2000, then 3 of the digits have to be 5.  The remaining 2 digits must have a product of 

16 or 24 . 
 Thus the two remaining digits must be 4 and 4, or 2 and 8. 
 
 Possibility 1 

 Case 1 Using the numbers 5, 5, 5, 4, 4 there are 
5!

3!2!
=10  possible numbers. 

 

 Case 2 Using the numbers 5, 5, 5, 2, 8 there are 
5!
3!

= 20  possible numbers. 

  There are 30 possible such numbers. 
 
   OR 
 
 Possibility 2 

 We choose 3 of the 5 positions for the “5s” in 
5
3

 
 
 

 
 
  ways; there are 3 possibilities for the remaining two digits (including 

order):  2, 8; 4, 4; 8, 2. 

 So there are 3×
5
3

 

 
 

 

 
 =3 ×10 =30  possible such 5 digit numbers. 

  ANSWER: 30 
 
 
6. Solve the equation 4 16sin 2 x( )=26 sin x , for 0 ≤ x ≤ 2π. 

 
 Solution 
 We write all factors as powers of 2.  Thus 

  

4 16sin2 x( )= 26 sin x

22 24 sin2 x( )= 26 sin x

24sin 2 x +2 = 26 sin x (*)

 

 Equating exponents (which we can do by taking base 2 logarithms), 

  

4 sin2 x + 2 = 6 sin x

2 sin2 x –3 sin x +1= 0
2 sin x –1( ) sin x –1( )= 0

 

 Therefore, sin x = 1
2

 or sin x =1. 

 Since 0 ≤ x ≤ 2π, x =
π
6

,
5π
6

 or 
π
2

. 

  ANSWER:
π
6

,
5π
6

, 
π
2

 

 



 
7. The sequence of numbers …, a–3, a– 2, a–1, a0, a1, a2, a3 , … is defined by an – n +1( )a2–n = n +3( )2 , for all integers n.  

Calculate a0 . 

 
 Solution 
 Using the given general equation, we note that there are only two choices of n which yield equations containing a2 , 

n = 0 or 2. 
 i.e. a0 – a2 = 9  from n = 0 
  a2 – 3a0 = 25 from n =2  
 Adding the first equation to the second, we obtain –2a0 = 34, so a0 = –17. 

  ANSWER: –17 
 
 
8. In the diagram, ∆ ABC  is equilateral and the radius of its 

inscribed circle is 1.  A larger circle is drawn through the vertices 
of the rectangle ABDE . 

 What is the diameter of the larger circle? 

     

E C D

A B  
 
 Solution 
 First, we calculate the side length of the equilateral triangle ABC . 
 Let O be the centre of the smaller circle and P the point of tangency of 

the circle to the side AB . 
 Join OP  and OB .  Then ∠ OPB = 90°  by tangency and ∠ OBP =30°  

by symmetry since ∠ CBA = 60° . 

C

A P B

O 30°

 
 Since OP =1 and ∆ BOP  is 30°-60°-90°, then OB =2  and BP = 3 .  Thus AB = 2 3 . 
 Also by symmetry, CO = OB = 2 , so CP = 3. 
 
 Since ABDE  is a rectangle and CP ⊥ AB , then AE =3 . 
 We now look at the rectangle ABDE  and its circumcircle. 
 Since ABDE  is a rectangle, ∠ EAB = 90° . 

 So BE  is a diameter. 
 By Pythagoras, 

  

BE2 = EA2 + AB2

=32 + 2 3( )2

= 21

 

 The diameter is 21 . 

E D

A B

3

2 3  

    ANSWER: 21  
 
 



 
Part B 

 
1. Triangle ABC  has vertices A 0, 0( ), B 9, 0( ) and C 0, 6( ).  The points P and Q lie on side AB  such that AP = PQ = QB .  

Similarly, the points R and S lie on side AC  so that AR = RS = SC .  The vertex C is joined to each of the points P and Q.  
In the same way, B is joined to R and S. 

 (a) Determine the equation of the line through the points R and B. 
 (b) Determine the equation of the line through the points P and C. 
 (c) The line segments PC  and RB intersect at X, and the line segments QC  and SB  intersect at Y.  Prove that the 

points A, X and Y lie on the same straight line. 
 
 Solution 
 Since A 0, 0( ), B 9, 0( ) and AP = PQ = QB , then P has coordinates 3, 0( ) and Q has coordinates 6, 0( ). 
 Similarly, R is the point (0, 2) and S is the point (0, 4). 
 
 (a) Since R is (0, 2) and B is (9, 0), then the slope of RB is m =

2 – 0
0 – 9

= –
2
9

 and so the equation of the line is 

  
y – 2 = – 2

9
x – 0( )

y = – 2
9

x + 2
 

 
 (b) Since P is (3, 0) and C is (0, 6), then the slope of PC  is m =

0 – 6
3 – 0

= – 2  and so the equation of the line is 

  
y – 0 = –2 x – 3( )

y = –2x +6
 

 
 (c) First, we determine the coordinates of X. 
  Equating the lines from (a) and (b), we have  

   

– 2
9

x +2 = – 2x +6

16
9

x = 4

x = 9
4

 

C(0, 6)

S(0, 4)

R(0, 2)

A(0, 1) P(3, 0) Q(6, 0) B(9, 0)

X

Y

 
  and substituting into y = –2x +6 = –2 9

4
 
 

 
 

+6 = 3
2

, so X is the point 9
4

, 3
2

 
 

 
 

. 

  We calculate the equations of the lines QC  and SB  as in (a) and (b). 

  For QC , slope =
0 – 6
6 – 0

= –1 and so y – 0 = –1 x – 6( )  or y = –x +6. 

  ForSB , slope = 
0 – 4
9 – 0

= –
4
9

 and so y – 0 = –
4
9

x – 9( ) or y = – 4
9

x + 4 . 

  So the point Y, which lies at the intersection QC  and SB , we obtain by equating these lines 

   

–x + 6 = – 4
9

x +4

2 = 5
9

x

x = 18
5

 

  and so y = –x +6 = – 18
5

+6 = 12
5

 and thus Y is the point 18
5

, 12
5

 
 

 
 

. 

  Now the line through A 0, 0( ) and X 9
4

, 3
2

 
 

 
 

 has slope m =

3
2

– 0
9
4

– 0
= 2

3
 and so is y = 2

3
x . 



 

  The point Y lies on this line, as 12
5

= 2
3

18
5

 
 
  

 
 .  [This could be done with L.S./R.S. format using equation of line.] 

  Therefore A, X, Y lie on the same line. 
 
 
2. In ∆ ABC , the points D, E and F are on sides BC , CA  and AB , 

respectively, such that ∠ AFE = ∠ BFD , ∠ BDF = ∠ CDE , and 
∠ CED = ∠ AEF . 

 (a) Prove that ∠ BDF = ∠ BAC . 

 (b) If AB = 5, BC = 8 and CA = 7, determine the length of 
BD . 

F

A

B D C

E

 
 
 Solution  
 (a) Let ∠ AFE = ∠ BFD = x  

   
∠ BDF = ∠ CDE = y
∠ CED = ∠ AEF = z

 

  Thus ∠ FAE =180° – x – z  
 

     
∠ FBD =180° – x – y
∠ ECD =180° – y – z

 

  and these 3 angles add to 180° , so 

F

A

B D C

E
x z

x

y y

z

 
 

   
540° – 2 x + y + z( )=180°

x + y + z =180°
 

  Since ∠ FAE + ∠ AFE + ∠ AEF =180°  (from ∆ AEF ) 

   
∠ FAE + x + z = x + y + z

∠ FAE = y
 

  Therefore ∠ BDF = ∠ BAC . 

 
 
 (b) Similarly to part (a), ∠ ECD = ∠ BFD = x , ∠ FBD = ∠ CED = z . 

  By equal angles, ∆ ABC ~ ∆ DBF ~ ∆ DEC ~ ∆ AEF  and so 
BD
BF

=
BA
BC

=
5
8

, 
CD
CE

=
CA
CB

=
7
8

, 
AE
AF

=
AB
AC

=
5
7

. 

  Therefore, let BD = 5k , BF =8k , CD = 7l , CE =8l , AE = 5m , AF = 7m  for some k, l, m. 
  Then 5k +7l =8  (1) 
   7m +8k = 5 (2) 
   5m + 8l = 7 (3) 
  Determining 7 ×  (3) – 5 ×  (1) to eliminate m, we get 
   56l – 40k = 49 – 25 = 24  

       7l – 5k = 3 (4) 

F

A

B D C

E
x z

x

y y

z

7m 5my

z x

8k

5k 7l

8l

 
  Calculating (1) – (4), we get 10k = 5 or BD = 5k = 5

2
. 

 
 



 
 
3. (a) Alphonse and Beryl are playing a game, starting with the 

geometric shape shown in Figure 1.  Alphonse begins the 
game by cutting the original shape into two pieces along one
of the lines.  He then passes the piece containing the black 
triangle to Beryl, and discards the other piece. 

 

 
 

Figure 1 

 Beryl repeats these steps with the piece she receives; that is to say she cuts along the length of a line, passes the 
piece containing the black triangle back to Alphonse, and discards the other piece.  This process continues, with 
the winner being the player who, at the beginning of his or her turn receives only the black triangle.  Show, with 
justification, that there is always a winning strategy for Beryl. 

 
 Solution 
 We first consider Alphonse’s possible moves to begin the game.  We can assume, without loss of generality, that he cuts 

on the left side of the black triangle. 

 
 Case 1 

 Alphonse removes two white triangles, leaving . 

 In this case, Beryl removes only one white triangle, and passes the shape  back to Alphonse, forcing him to 

remove the last white triangle and lose. 
 
 Case 2 

 Alphonse removes one white triangle only, leaving . 

 Beryl removes both of the white triangles on the right, leaving Alphonse in the same position as in Case 1 for his second 
turn. 

 Therefore Beryl can always win, regardless of Alphonse’s strategy. 



 
 
 (b) Alphonse and Beryl now play a game with the same rules 

as in (a), except this time they use the shape in Figure 2 
and Beryl goes first.  As in (a), cuts may only be made 
along the whole length of a line in the figure.  Is there a 
strategy that Beryl can use to be guaranteed that she will 
win?  (Provide justification for your answer.) 

 

 
 

Figure 2 
 
 Solution 
 We show that, again, Beryl always has a winning strategy. 
 The strategy is to reduce the shape in Figure 2 to the shape in Figure 1, and to have Alphonse make the first cut at this 

stage.  Beryl also knows that if she is forced into a position of being the first to cut when Figure 2 is reduced to Figure 1, 
then Alphonse can force her to lose. 

 We number the lines on the diagram for convenience. 
(1)

(9)

(2)

(3)

(8)

(7)

(4) (5) (6)  
 We can assume without loss of generality (because of symmetry) that Beryl cuts along (1), (2) or (3) to begin. 
 If she cuts (2) or (3), then Alphonse cuts the other of these two and leaves Beryl with Figure 1, where she will lose. 
 Therefore Beryl cuts (1) to begin. 

 
 If Alphonse now cuts (2) or (3), Beryl cuts the other of these two and passes the shape in Figure 1 back to Alphonse, and 

so he loses. 
 If Alphonse cuts (8) or (9), Beryl cuts the opposite and passes the shape in Figure 1 to Alphonse, and so he loses.  

(Similarly, if he cuts (5) or (6)). 
 So assume that Alphonse cuts (4) or (7), say (4) by symmetry. 

 
 If Beryl now cuts any of (2), (3), (5), (6), (8), or (9), then Alphonse can force Beryl to lose, in the same way as she could 

have forced him to lose, as above.  So Beryl cuts (7). 

 
 Now Alphonse is forced to cut one of (2), (3), (5), (6), (8), or (9), and so Beryl makes the appropriate cut, passing the 

shape in Figure 1 back to Alphonse, and so he must lose. 

 Therefore Beryl always can have a winning strategy. 
 
 
 
 



 
4. A sequence  t1, t2, t3, ..., tn  of n terms is defined as follows: 
  t1 =1, t2 = 4 , and tk = tk –1 + tk–2  for k =3, 4, ..., n . 
 Let T be the set of all terms in this sequence; that is, T = t1, t2 , t3, ..., tn{ } . 

 (a) How many positive integers can be expressed as the sum of exactly two distinct elements of the set T ? 
 
 Summary 
 Part (a) 4 ✓ 
 Part (b) 6 ✓ 
 
 Solution 
 tk > 0 for all k, 1 ≤ k ≤ n . 
 Also tk < tk+1  for all k ≤ n –1 since tk +1 = tk + tk–1 . 

 Hence the sequence is monotone increasing. 

 The sum of any pair of terms is an integer and there are 
n
2

 

 
 

 

 
  pairs. 

 Can any two pairs produce the same integer? 
 Consider ta + tb  and tc + td .  Clearly if tb = td  then ta = tc  and vice versa, implying the same pair. 
 Hence none of the four terms is equal, so we can assume one term, say td  to be the largest. 
 Then td = td –1 + td –2 ≥ ta + tb , since the maximum values of ta  and tb  are td –1  and td –2  and they cannot be alike. 

 But since tc >0 , tc + td > ta + td  and there are no two pairs that add to the same integer, so there are exactly 
n
2

 

 
 

 

 
  integers 

possible. 



 
 (b) How many positive integers can be expressed as the sum of exactly three distinct elements of the set T ? 
 
  Solution 
  Consider ta + tb + tc  and td + te + t f .  If any of the first three equals any of the second three we are left with pair 

sums of the remaining ones being equal, which is impossible from part (a).  Hence there are six unlike terms, and 
again we can assume one, say t f , to be the greatest. 

  It is clearly possible for equality by setting ta  and tb  equal to t f –1 and t f –2  and then td  and te  equal to tc –1  and 

tc –2 . 
  In how many ways can this be done for given f.  Clearly,6 ≤ f ≤ n  , and since 2 < c < f – 2, for any given f there 

are f – 5  choices for c and the number of ways possible is f – 5( )
f =6

n

∑ =1+2 + 3+ + n – 5( )=
n – 4

2
 

 
 

 

 
 . 

  There are a maximum of 
n
3

 

 
 

 

 
 –

n – 4
2

 

 
 

 

 
  possible integers. 

  Of these, are any two of like sum? 
  In ta + tb + tc , the maximal values are t f +1, t f –3 , and t f –4 , since if one is t f –1 and one t f –2  we revert to the 

discussed state.  Hence 

   
ta + tb + tc ≤ t f –1 + t f –3 + t f –4

= t f –1 + t f –2

= t f .
 

  But td + te + t f > t f . 

  Hence there are no other triples for which equality of sums exist, and the number of possible integers is 
n
3

 

 
 

 

 
 –

n – 4
2

 

 
 

 

 
 . 

 
 


