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Part A

1.
−1 + 2− 3 + 4− 5 + 6− 7 + 8− 9 + 10− 11 + 12− 13 + 14− 15 + 16− 17 + 18

= (2− 1) + (4− 3) + (6− 5) + (8− 7) + (10− 9) + (12− 11) +

(14− 13) + (16− 15) + (18− 17)

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

= 9

Answer: 9

2. We write 5073 in place value notation as 5× 1000 + 7× 10 + 3 or 5× 103 + 7× 101 + 3× 100.

Thus, if a = 0, b = 3 and c = 1, then the left side (3× 10a + 5× 10b + 7× 10c) equals 5073.

Any other combination of values for a, b and c will not give 5073.

Therefore, a+ b+ c = 0 + 3 + 1 = 4.

(We can show that the only possibility is a = 0, b = 3 and c = 1. We start by noting that

the remainder when the right side is divided by 10 is 3, so the remainder when the left side is

divided by 10 must also be 3. If a = 0 and each of b and c is larger than 0, then the remainder

on the left side will be 3. If more than one of a, b and c equals 0, then we can see by trying

the possibilities that the remainder on the left side cannot be 3.

Therefore, a = 0 and b and c are positive.

We can then subtract 3 from both sides and divide by 10 to obtain the new equation

5× 10b−1 + 7× 10c−1 = 507

and repeat the argument to show that c = 1 and then b = 3.)

Answer: 4

3. Solution 1

Suppose that Soroosh has d dimes.

Since he has 10 coins, then he has 10− d quarters.

The value of the dimes is 10d cents and the value of the quarters is 25(10− d) cents.

Since we want the value of the dimes to be larger than the value of the quarters, then

10d > 25(10− d)

10d > 250− 25d

35d > 250

7d > 50

d > 50
7

= 71
7
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Since d is an integer, then d ≥ 8, so the smallest possible number of dimes is 8.

Solution 2

We proceed by systematic trial and error.

If Soroosh has 4 quarters and 6 dimes, then the quarters are worth 4 × 25 = 100 cents and

the dimes are worth 6× 10 = 60 cents. (Any smaller number of dimes than 6 makes the value

of the dimes smaller and the value of quarters larger, so the number of dimes must be greater

than 6.)

If Soroosh has 3 quarters and 7 dimes, then the quarters are worth 3× 25 = 75 cents and the

dimes are worth 7× 10 = 70 cents.

If Soroosh has 2 quarters and 8 dimes, then the quarters are worth 2× 25 = 50 cents and the

dimes are worth 8× 10 = 80 cents.

Therefore, the smallest number of dimes for which the value of the dimes is greater than the

value of the quarters is 8.

Answer: 8

4. Solution 1

From the given conditions, we want 15(12) = 180 to be divisible by n, and 15n to be divisible

by 12, and 12n to be divisible by 15.

For 15n to be divisible by 12, then 15n is a multiple of 12, or 15n = 12m for some positive

integer m. Simplifying, we see that 5n = 4m.

Since the right side is divisible by 4, then the left side must be divisible by 4, so n must be

divisible by 4.

For 12n to be divisible by 15, we must have 12n = 15k for some positive integer k. Simplifying,

we see that 4n = 5k.

Since the right side is a multiple of 5, then the left side must be a multiple of 5, so n must be

a multiple of 5.

Therefore, n must be a multiple of 4 and a multiple of 5.

This tells us that n must be a multiple of 20.

Since we want n to be as small as possible, then we try n = 20, since this is the smallest positive

multiple of 20.

If n = 20, then it is true that 15(12) = 180 is divisible by 20, and 15(20) = 300 is divisible by

12, and 12(20) = 240 is divisible by 15.

Thus, the smallest possible value of n is 20.

(We could instead have started with the condition 180 is divisible by n, listed the positive

divisors of 180, and then tried these divisors starting from the smallest until we found a divisor

that satisfied the other two conditions.)
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Solution 2

First, we note that the prime factorizations of 12 and 15 are 12 = 22 · 3 and 15 = 3 · 5.

Since 12 | 15n, then n must contain a factor of 22 since 12 does and 15 is not divisible by 2.

Since 15 | 12n, then n must contain a factor of 5 since 15 does and 12 does not.

Since n | 12(15) = 22 · 32 · 5, then n cannot contain more than 2 factors of 2 and 1 factor of 5,

since 12(15) contains only 2 factors of 2 and 1 of 5.

Therefore, to make n as small as possible, n must be exactly 22 · 5 = 20.

(Can you find the other values of n that work?)

Answer: 20

5. Solution 1

We represent the sequence of islands that Maya visits as a sequence of letters starting with A.

Since she makes 20 bridge crossings, then she visits 21 islands in total, so the sequence contains

21 letters.

If Maya is on island A or on island C, then the next island that she visits must be island B,

since it is the only island connected to A and the only island connected to C.

If Maya is on island B, then Maya has two choices: cross to island A or cross to island C.

Since she starts at island A, then the second letter in the sequence must be B, since she must

cross to island B.

The third letter can be either A or C, as she has a choice from island B.

Once on island A or C, she must cross back to island B, so the fourth letter is B.

She is thus in the same situation as she was after her first crossing, and so the pattern continues.

In other words, the letters in odd positions in the sequence, starting at the third, can be either

A or C, and the letters in the even positions must be B.

We can represent the sequence then as follows:

A B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C
B
A

C

Thus, there are 10 positions in the sequence where Maya has 2 choices and the rest of the

positions are fixed.

Thus, there are 210 = 1024 possible sequences.

Solution 2

Define Sn to be the number of sequences starting at island A with n crossings. We want to

determine S20.

Note that S2 = 2 (A to B to A, and A to B to C are the possible routes).

First, we note that islands A and C are interchangeable, since we could switch the labels and

there would be no structural difference to the diagram.
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Thus, the number of sequences of a given length starting at A is the same as the number of

sequences of the same length starting at C.

Suppose that Maya is going to make a journey with t crossings, where t is an even integer with

t ≥ 4. There are St such sequences.

After two crossings, Maya would be at either island A or island C and would have t−2 crossings

remaining.

But starting at either island A or C, there are St−2 sequences that she could follow.

Therefore, St = St−2 + St−2 = 2St−2.

Now,

S20 = 2S18 = 2(2S16) = 22S16 = 23S14 = · · · = 29S2 = 29(2) = 210 = 1024

Therefore, there are 1024 possible sequences.

Answer: 210 = 1024

6. Solution 1

Suppose that the polygon has n sides.

Extend CB outside of the polygon. Since the sum of the exterior angles in a polygon is always

360◦, then ∠ABE =

(
360

n

)◦
, since there will be n equal exterior angles.

A

B C
DE

Thus, ∠ABC = 180◦−
(

360

n

)◦
and this will also be the measure of ∠BCD, since the polygon

is regular.

Since the polygon is regular, then AB = BC, so 4ABC is isosceles, which means that we have

∠BAC = ∠BCA.

Therefore,

∠BCA =
1

2
(180◦ − ∠ABC) =

1

2

(
180◦ −

(
180◦ −

(
360

n

)◦))
=

(
180

n

)◦
But ∠BCD = ∠BCA+ ∠ACD, so

180◦ −
(

360

n

)◦
=

(
180

n

)◦
+ 120◦

60 =
540

n
n = 9

Therefore, the polygon has 9 sides.
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Solution 2

Suppose that the polygon has n sides.

Let O be the centre of the polygon. Join O to each of A, B, C, and D.

Since the polygon is regular, then the angle subtended at O by each of the n sides will be equal,

and these angles all add to 360◦.

A

B C
D

O

Since there are n equal central angles, then ∠AOB = ∠BOC = ∠COD =

(
360

n

)◦
.

This also tells us that ∠AOC = ∠AOB + ∠BOC = 2

(
360

n

)◦
=

(
720

n

)◦
.

Since the polygon is regular, then OA = OC = OD, which tells us that 4AOC and 4COD
are both isosceles.

Thus,

∠ACO =
1

2
(180◦ − ∠AOC) =

1

2

(
180◦ −

(
720

n

)◦)
= 90◦ −

(
360

n

)◦
and

∠DCO =
1

2
(180◦ − ∠COD) =

1

2

(
180◦ −

(
360

n

)◦)
= 90◦ −

(
180

n

)◦
Now, ∠ACD = ∠ACO + ∠DCO, so

120◦ = 90◦ −
(

360

n

)◦
+ 90◦ −

(
180

n

)◦
540

n
= 60

n = 9

Therefore, the polygon has 9 sides.

Answer: 9
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7. Using the rules for manipulating logarithms and trigonometric functions,

log2(−3 sin θ) = 2 log2(cos θ) + 1

log2(−3 sin θ) = log2(cos2 θ) + log2 2

log2(−3 sin θ) = log2(2 cos2 θ)

2log2(−3 sin θ) = 2log2(2 cos2 θ)

−3 sin θ = 2 cos2 θ

−3 sin θ = 2(1− sin2 θ) (since cos2 θ + sin2 θ = 1)

2 sin2 θ − 3 sin θ − 2 = 0

(2 sin θ + 1)(sin θ − 2) = 0

Therefore, sin θ = −1
2

or sin θ = 2.

The second possibility is inadmissible, so sin θ = −1
2
.

Since 0◦ ≤ θ ≤ 360◦ and sin θ = −1
2
, then θ = 210◦ or θ = 330◦.

But, we also need cos θ > 0 to satisfy the domains of the logarithms in the original equation.

Therefore, θ = 210◦ is inadmissible (since it is in the third quadrant and cos θ < 0), but

θ = 330◦ is the admissible (since it is in the fourth quadrant and cos θ > 0).

Checking, sin(330◦) = −1
2

and cos(330◦) =
√

3
2

, so the left side of the original equation equals

log2

(
3
2

)
and the right side equals 2 log2

(√
3

2

)
+ 1 = log2

(
3
4

)
+ log2(2) = log2

(
3
2

)
, as required.

Therefore, θ = 330◦.

Answer: 330◦

8. We examine three cases: b = c, b > c and b < c.

Note that, in any of these cases, we have a! > 4(b!) and a! > 10(c!) so a > b and a > c.

Case 1: b = c

Here, the equation becomes a! = 14(b!) or
a!

b!
= 14 or a(a− 1) · · · (b+ 2)(b+ 1) = 14.

The expression on the left side is a single integer (if a = b + 1) or the product of 2 or more

consecutive integers.

Since 14 = 2(7), then 14 cannot be written as the product of two or more consecutive integers.

Therefore, the expression on the left must be a single integer.

Therefore, a = b+ 1 = 14, so b = c = 13.

Thus, the only solution in this case is (a, b, c) = (14, 13, 13).

Case 2: b > c

Dividing both sides by b!, the equation becomes
a!

b!
= 4 +

10(c!)

b!
or

a(a− 1) · · · (b+ 2)(b+ 1) = 4 +
10

b(b− 1) · · · (c+ 2)(c+ 1)
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Since the left side is an integer, then the right side must be an integer. Thus,

10

b(b− 1) · · · (c+ 2)(c+ 1)

is an integer, which means that 10 is divisible by b(b − 1) · · · (c + 2)(c + 1), which is again a

single integer (if b = c + 1) or the product of 2 or more consecutive integers, each of which is

at least 2 (since c ≥ 1).

As in Case 1, the only possibility is that the denominator is one of the single integers 10, 5

and 2.

The possibilities are thus b = c + 1 = 10 (whence b = 10 and c = 9), b = c + 1 = 5 (whence

b = 5 and c = 4), or b = c+ 1 = 2 (whence b = 2 and c = 1).

If b = 10 and c = 9, the right side of the initial equation becomes 4(10!)+10(9!) or 4(10!)+(10!),

which equals 5(10!). This number is not a factorial because it is bigger than 10! and less than

11!. There is thus no possible value for a.

If b = 5 and c = 4, the right side of the initial equation becomes 4(5!) + 10(4!), which equals

480 + 240 = 720 = 6!, and so a = 6.

If b = 2 and c = 1, the right side of the initial equation becomes 4(2!) + 10(1!) = 8 + 10 = 18.

This number is not a factorial because it is bigger than 3! and less than 4!. There is thus no

possible value for a.

Therefore, the only solution in this case is (a, b, c) = (6, 5, 4).

Case 3: b < c

Dividing both sides by c!, the equation becomes
a!

c!
=

4(b!)

c!
+ 10 or

a(a− 1) · · · (c+ 2)(c+ 1) =
4

c(c− 1) · · · (b+ 2)(b+ 1)
+ 10

Since the left side is an integer, then the right side must be an integer. Thus,

4

c(c− 1) · · · (b+ 2)(b+ 1)

is an integer, which means that 4 is divisible by c(c−1) · · · (b+2)(b+1), which is again a single

integer (if c = b+ 1) or the product of 2 or more consecutive integers, each of which is at least

2 (since b ≥ 1).

As in Case 2, the only possibility is that the denominator is one of the single integers 4 and 2.

The possibilities are thus c = b + 1 = 4 (whence c = 4 and b = 3) or c = b + 1 = 2 (whence

c = 2 and b = 1).

If c = 4 and b = 3, the right side of the initial equation becomes 4(3!) + 10(4!) which equals

24 + 240 = 264. This number is not a factorial because it is bigger than 5! and less than 6!.

There is thus no possible value for a.

If c = 2 and b = 1, the right side of the initial equation becomes 4(1!) + 10(2!) which equals
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4 + 20 = 24 = 4!, and so a = 4.

Therefore, the only solution in this case is (a, b, c) = (4, 1, 2).

Therefore, the three solutions are (a, b, c) = (14, 13, 13), (6, 5, 4), and (4, 1, 2).

Answer: (a, b, c) = (14, 13, 13), (6, 5, 4), and (4, 1, 2)
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Part B

1. (a) Solution 1

By the Pythagorean Theorem, since AC > 0,

AC =
√
CB2 − AB2 =

√
152 − 92 =

√
225− 81 =

√
144 = 12

Therefore, the area of 4ABC is 1
2
(AB)(AC) = 1

2
(9)(12) = 54.

Solution 2

Since 4ABC is right-angled at A and AB : CB = 9 : 15 = 3 : 5, then 4ABC is similar

to a 3 : 4 : 5 triangle.

Therefore, AC = 4
3
AB = 4

3
(9) = 12.

Therefore, the area of 4ABC is 1
2
(AB)(AC) = 1

2
(9)(12) = 54.

(b) From (a), AC = 12.

Since the area of4CDB is 84, then 1
2
(DB)(AC) = 84 or 1

2
(DB)(12) = 84 or 6(DB) = 84.

Therefore, DB = 14 and so DA = DB − AB = 14− 9 = 5.

Lastly, by the Pythagorean Theorem, since CD > 0, we have

CD =
√
DA2 + AC2 =

√
52 + 122 =

√
25 + 144 =

√
169 = 13

(c) Since the area of 4PQR is 300, then 1
2
(QR)(PT ) = 300 or 1

2
(25)(PT ) = 300

or 25(PT ) = 600 or PT = 24.

By the Pythagorean Theorem, since QT > 0,

QT =
√
PQ2 − PT 2 =

√
252 − 242 =

√
625− 576 =

√
49 = 7

Thus, TR = QR−QT = 25− 7 = 18.

In 4PTR, we now have PT = 24, ∠PTR = 90◦, and TR = 18.

Lastly, by the Pythagorean Theorem, since PR > 0, we have

PR =
√
PT 2 + TR2 =

√
242 + 182 =

√
576 + 324 =

√
900 = 30

(The given diagram implies that T , the foot of the altitude from P to QR, lies between

Q and R, although the problem does not explicitly state this. If this implied restriction is

removed, there is a second case with PR = 40, ∠PQR obtuse, and T to the left of Q.)

2. (a) The line through points Q and M has slope
7− 1

4− 19
=

6

−15
= −2

5
and so has equation

y − 7 = −2
5
(x− 4) or y = −2

5
x+ 43

5
.

(b) Solution 1

The midpoint, N , of PQ has coordinates
(

1
2
(7 + 19), 1

2
(13 + 1)

)
= (13, 7).
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The line through points R and N has slope
7− 1

13− 1
=

6

12
=

1

2
and so has equation

y − 1 = 1
2
(x− 1) or y = 1

2
x+ 1

2
.

At the point of intersection of y = −2
5
x+ 43

5
and y = 1

2
x+ 1

2
, the values of y are equal so:

1
2
x+ 1

2
= −2

5
x+ 43

5

5
10
x+ 4

10
x = 86

10
− 5

10

9
10
x = 81

10

x = 9

Since the x-coordinate of G is 9, then the y coordinate is 1
2
(9) + 1

2
= 10

2
= 5, so the

coordinates of G are (9, 5).

Solution 2

Point G is the intersection of two of the medians of 4PQR, and so is the centroid of

4PQR. (In fact, all three medians will pass through G.)

The coordinates of the centroid are the averages of the coordinates of the three vertices.

Thus, the coordinates of G are
(

1
3
(7 + 1 + 19), 1

3
(13 + 1 + 1)

)
= (9, 5).

(c) Solution 1

The slope of PR is
13− 1

7− 1
=

12

6
= 2.

Since QF is perpendicular to PR, then its slope is the negative reciprocal of 2, or −1
2
.

Thus, the line through Q and F has equation y − 1 = −1
2
(x− 19) or y = −1

2
x+ 21

2
.

The slope of PQ is
13− 1

7− 19
=

12

−12
= −1.

Since RT is perpendicular to PQ, then its slope is the negative reciprocal of −1, or 1.

Thus, the line through R and T has equation y − 1 = 1(x− 1) or y = x.

At the point of intersection of these lines, the values of y are equal so:

x = −1
2
x+ 21

2

3
2
x = 21

2

x = 7

Since the x-coordinate of H is 7, then the y coordinate is also 7, since H lies on the line

y = x.

Thus, the coordinates of H are (7, 7).

Solution 2

The three altitudes of 4PQR all pass through H.

Since side QR of 4PQR is horizontal, then the altitude from P must be vertical.

Since the x-coordinate of Q is 7, then the equation of the altitude through P is x = 7.

We can then determine the equation of a second altitude, say the altitude through R and
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T as in Solution 1, to be y = x.

Therefore, point H lies at the intersection of y = x and x = 7, which is the point (7, 7).

(d) The distance between O(0, 0) and G is
√

(9− 0)2 + (5− 0)2 =
√

81 + 25 =
√

106.

The distance between O and H is
√

(7− 0)2 + (7− 0)2 =
√

49 + 49 =
√

98.

Since
√

98 <
√

106, then H is closer to the origin than G.

3. (a) To find all real fixed points, we need to solve the equation f(c) = c.

Since f(x) = x2 − 2, we solve c2 − 2 = c or c2 − c− 2 = 0.

Thus, (c− 2)(c+ 1) = 0, so the real fixed points are c = 2 and c = −1.

(b) Solution 1

Suppose that g(x) = ax3 + bx2 +dx+ e for some real coefficients a, b, d, e with a 6= 0 (since

g(x) is cubic). Suppose also that f and g commute (that is, f(g(x)) = g(f(x)) for all real

numbers x). Now,

f(g(x)) = f(ax3 + bx2 + dx+ e)

= (ax3 + bx2 + dx+ e)2 − 2

= a2x6 + b2x4 + d2x2 + e2 + 2abx5 + 2adx4 + 2aex3 + 2bdx3 + 2bex2 + 2dex− 2

= a2x6 + 2abx5 + (b2 + 2ad)x4 + (2ae+ 2bd)x3 + (d2 + 2be)x2 + 2dex+ (e2 − 2)

and

g(f(x)) = g(x2 − 2)

= a(x2 − 2)3 + b(x2 − 2)2 + d(x2 − 2) + e

= a(x6 − 6x4 + 12x2 − 8) + b(x4 − 4x2 + 4) + d(x2 − 2) + e

= ax6 + (−6a+ b)x4 + (12a− 4b+ d)x2 + (−8a+ 4b− 2d+ e)

Since f(g(x)) = g(f(x)) for all real numbers x, then the coefficients on the left side must

equal the coefficients on the right side.

Therefore,

a2 = a (1)

2ab = 0 (2)

b2 + 2ad = −6a+ b (3)

2ae+ 2bd = 0 (4)

d2 + 2be = 12a− 4b+ d (5)

2de = 0 (6)

e2 − 2 = −8a+ 4b− 2d+ e (7)
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From (1), a2 − a = 0 or a(a− 1) = 0 and so a = 1 or a = 0. Since a 6= 0, then a = 1.

Substituting a = 1 into (2), we obtain 2b = 0 or b = 0.

Substituting a = 1 and b = 0 into (3), we obtain 0 + 2(1)d = −6(1) + 0 or 2d = −6, so

d = −3.

Substituting d = 3 into (6), we obtain −6e = 0 so e = 0.

We can check that a = 1, b = 0, d = −3, and e = 0 satisfy equations (4), (5) and (7).

Therefore, g(x) = 1x3 + 0x2 + (−3)x + 0 = x3 − 3x is the only cubic polynomial that

commutes with f(x).

(We can check by expanding that (x3 − 3x)2 − 2 = (x2 − 2)3 − 3(x2 − 2).)

Solution 2

Suppose that g(x) = ax3 + bx2 +dx+ e for some real coefficients a, b, d, e with a 6= 0 (since

g(x) is cubic). Suppose also that f and g commute (that is, f(g(x)) = g(f(x)) for all real

numbers x). Now,

f(g(x)) = f(ax3 + bx2 + dx+ e)

= (ax3 + bx2 + dx+ e)2 − 2

and

g(f(x)) = g(x2 − 2)

= a(x2 − 2)3 + b(x2 − 2)2 + d(x2 − 2) + e

Since f(g(x)) = g(f(x)) for all real numbers x, then the coefficients on the left side must

equal the coefficients on the right side when expanded.

On the left side, the only term involving x6 will come from squaring the term ax3, so the

coefficient of x6 is a2.

On the right side, the only term involving x6 comes from a(x2 − 2)3; since the coefficient

of x6 in (x2 − 2)3 is 1, then the coefficient of x6 on the right side is a.

Therefore, a2 = a or a2 − a = 0 or a(a− 1) = 0 and so a = 1 or a = 0. Since a 6= 0, then

a = 1.

When the expansion on the right side is done, there will be only even powers of x.

Thus, the left side cannot contain any odd powers of x.

When the left side is expanded, we will obtain a term 2abx5. Thus, 2ab = 0. Since a = 1,

then b = 0.

Therefore, we have

(x3 + dx+ e)2 − 2 = (x2 − 2)3 + d(x2 − 2) + e

On the left side, the only way to obtain an x4 term is by multiplying x3 and dx, so the x4

term on the left side is 2dx4. On the right side, the only x4 term is from the expansion of
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(x2 − 2)3 and so is 3(−2)(x2)2 = −6x4.

Comparing coefficients, 2d = −6 or d = −3.

Since the right side contains no term involving x1, then the coefficient of x on the left side

is 0.

When (x3 − 3x+ e)2 − 2 is expanded, the term involving x1 will be 2(−3x)e = −6ex and

so −6e = 0 or e = 0.

Therefore, g(x) = 1x3 + 0x2 + (−3)x + 0 = x3 − 3x is the only cubic polynomial that

commutes with f .

(We can check by expanding that (x3 − 3x)2 − 2 = (x2 − 2)3 − 3(x2 − 2).)

(c) We prove the desired result by contradiction.

Suppose that q(x) has a real fixed point c; that is, suppose that q(c) = c.

Since p and q commute, then p(q(x)) = q(p(x)) for all real numbers x.

In particular, p(q(c)) = q(p(c)).

Since q(c) = c, this equation becomes p(c) = q(p(c)).

Since the equation that we are given is true for all real numbers x, then it is true for x = c,

so

2 [q(p(c))]4 + 2 = [p(c)]4 + [p(c)]3

2 [p(c)]4 + 2 = [p(c)]4 + [p(c)]3 (from above)

[p(c)]4 − [p(c)]3 = −2

Define u = p(c). Note that u is a real number since c is a real number and p(x) has real

coefficients.

To arrive at our contradiction, we show that there are no real numbers u for which

u4 − u3 = −2.

We do this by looking at three cases: u ≥ 1, u ≤ 0, and 0 < u < 1.

If u ≥ 1, then u4 = u(u3) ≥ 1(u3) = u3 so u4 − u3 ≥ 0, which means that u4 − u3 6= −2.

If u ≤ 0, then u3 ≤ 0, which means that u4 − u3 ≥ u4 ≥ 0, so u4 − u3 6= −2.

If 0 < u < 1, then u4 > 0 and u3 < 1, and so −u3 > −1. Thus, u4 − u3 > 0 + (−1) = −1,

so u4 − u3 6= −2.

In all cases, u4 − u3 6= −2.

This is a contradiction, since we have determined that [p(c)]4 − [p(c)]3 = −2.

Therefore, our original assumption must be incorrect, so q(x) cannot have a real fixed

point.

4. (a) We want to find all positive integers a for which the smallest positive s with the property

that a divides into 1 + 2 + 3 + · · ·+ s is s = 8.

Note that 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36. (We use the term triangular number to
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mean a positive integer of the form 1 + 2 + 3 + · · ·+ s.) The previous triangular numbers

are 1, 3, 6, 10, 15, 21, 28. Therefore, we want to find all positive integers a that are divisors

of 36 but not of any of 1, 3, 6, 10, 15, 21, 28.

The divisors of 36 are 1, 2, 3, 4, 6, 9, 12, 18, 36.

The divisors 1, 2, 3, 4, 6 each divide into at least one of 6 and 28, so f(1) 6= 8, f(2) 6= 8,

f(3) 6= 8, f(4) 6= 8, and f(6) 6= 8.

The divisors 9, 12, 18, 36 do not divide into any triangular number smaller than 36.

Therefore, the complete solution to f(a) = 8 is a = 9, 12, 18, 36.

(b) For m a positive integer, we define T (m) = 1 + 2 + · · · + m = 1
2
m(m + 1). (T (m) is the

mth triangular number.)

First, we show that if T (z) is a multiple of w, then f(w) ≤ z:

We know that f(w) is the smallest integer m for which 1+2+3+ · · ·+m = T (m)

is a multiple of w.

Suppose that T (z) is a multiple of w.

If z is the smallest positive integer with this property, then f(w) = z; otherwise,

z is not the smallest such positive integer, so f(w) < z.

In either case, f(w) ≤ z.

Next, we show that if y is an odd positive integer with y > 1, then f(y) ≤ y − 1:

Suppose that y = 2Y + 1 for some positive integer Y .

Then T (y − 1) = 1
2
(y − 1)y = 1

2
(2Y )(2Y + 1) = Y (2Y + 1) = Y y.

Thus, T (y − 1) is a multiple of y, and so by the first fact above, f(y) ≤ y − 1.

Next, we show that f(2a) = 2a+1 − 1 for every positive integer a:

Suppose that f(2a) = m.

Then 1
2
m(m+ 1) is a multiple of 2a, so 1

2
m(m+ 1) = q2a for some positive integer

q or 2a+1q = m(m+ 1).

Since one of m and m+ 1 is even and the other is odd, then the even one of these

must contain at least a+ 1 factors of 2 and so must be at least 2a+1.

The smallestm for which this is possible ism = 2a+1−1 which makesm+1 = 2a+1.

This tells us that f(2a) ≥ 2a+1 − 1.

But T (2a+1 − 1) = 1
2
(2a+1 − 1)2a+1 = 2a(2a+1 − 1), which is divisible by 2a, so

f(2a) ≤ 2a+1 − 1.

Therefore, f(2a) = 2a+1 − 1.

We can now look at f(b+ 1)− f(b) when b = 2a − 1 for some positive integer a.

Note that b is odd.

In this case,

f(b+ 1)− f(b) = f(2a)− f(2a − 1) = 2a+1 − 1− f(2a − 1) ≥ 2a+1 − 1− (2a − 2) = 2a + 1
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If a ≥ 11, then 2a + 1 ≥ 2049 > 2009.

Therefore, if b = 2a−1 and a is a positive integer with a ≥ 11, then f(b+1)−f(b) > 2009,

so there are infinitely many odd positive integers b for which f(b+ 1)− f(b) > 2009.

(c) From (a), we know that f(c) = f(c+ 3) has a solution, namely c = 9, since f(9) = 8 and

f(12) = 8.

We show that k = 3 is the smallest possible value of k by showing that the equations

f(c) = f(c+ 1) and f(c) = f(c+ 2)

are not satisfied by any odd positive integer c.

If a and b are positive integers, we use the notation “a | b” to mean that b is divisible by

a (in other words, b is a multiple of a or equivalently a divides b).

Case 1: f(c) = f(c+ 1)

Suppose that f(c) = f(c+ 1) = m for some odd positive integer c.

Then c | T (m) and T (m) = 1
2
m(m+ 1); say, 1

2
m(m+ 1) = qc for some positive integer q.

Since c is odd, then m ≤ c− 1 by (b), so qc = 1
2
m(m+ 1) ≤ 1

2
(c− 1)(c) which tells us that

q ≤ 1
2
(c− 1).

But if f(c+ 1) = m as well, then c+ 1 | T (m) and T (m) = qc, so c+ 1 | qc.
Since c and c+ 1 are consecutive integers, then gcd(c, c+ 1) = 1.

(This is true since if d is a positive common divisor of c and c+1, then d divides into their

difference (which equals 1), so d itself must equal 1.)

Since c+ 1 | qc, and q and c are positive integers, and gcd(c, c+ 1) = 1, then c+ 1 | q, so

q ≥ c+ 1.

But q ≤ 1
2
(c− 1), which is a contradiction, since we cannot have q ≥ c+ 1 > 1

2
(c− 1) ≥ q.

Thus, f(c) = f(c+ 1) has no odd solutions.

Case 2: f(c) = f(c+ 2)

Suppose that f(c) = f(c+ 2) = m for some odd positive integer c.

Then c | T (m); say, 1
2
m(m+ 1) = qc for some positive integer q.

Since m ≤ c− 1 by (c), then qc ≤ 1
2
(c− 1)(c) which tells us that q ≤ 1

2
(c− 1).

But if f(c+ 2) = m as well, then c+ 2 | T (m) and T (m) = qc, so c+ 2 | qc.
Since c and c+ 2 are odd integers, then gcd(c, c+ 2) = 1.

(This is true since if d is a positive common divisor of c and c+ 2, then c divides into their

difference (which equals 2), so d itself must equal 1 or 2. But both c and c+ 2 are odd, so

d is odd, so d = 1.)

Since c+ 2 | qc, and q and c are positive integers, and gcd(c, c+ 2) = 1, then c+ 2 | q, so

q ≥ c+ 2.

But q ≤ 1
2
(c− 1), so we have a contradiction as above.
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Thus, f(c) = f(c+ 2) has no odd solutions.

Therefore, k = 3 is the smallest positive integer k for which f(c) = f(c+ k) has solutions

with c odd, since if k = 1 or k = 2, there are no solutions, and there is at least 1 solution

for k = 3.


