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70 Excerpt from The Math Olympian Richard Hoshino

73 Problems: 3911–3920

77 Solutions: 3811–3820

91 Solvers and proposers index

Crux Mathematicorum
Founding Editors / Rédacteurs-fondateurs: Léopold Sauvé & Frederick G.B. Maskell
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EDITORIAL
Dear Crux readers,

Have you seen this puzzle before?

You have 12 marbles and an old-fashioned balance scale in front of
you. One of the marbles is heavier than the others. Can you figure
out which one if you are allowed to use the scales only three times?
What if you know that one marble is different, but don’t know whether
it is heavier or lighter than the other 11 marbles? Can you find the
different marble by using the scales only three times?

What is so special about this problem? I personally enjoy its accessibility: to solve
it, you only need to know how a balance scale works. In a sense, this is problem
solving in its purest form.

Starting with this issue, I am happy to introduce to Crux some materials with
a slightly different flavour. Through examples and exercises, we will introduce
an area of mathematics that our readers probably have not seen before – in this
issue, we shall begin with Ramsey’s theory. Building anything from the ground
up is always an adventure and I hope you enjoy this kind of exploration into
mathematics.

I am also glad to feature an excerpt from Richard Hoshino’s “The Math Olympian”
(Crux intends to review the book; meanwhile, we will present a few excerpts) as
well as our ever-popular regular sections.

We at the CMS are working hard to eliminate the journal’s backlog; however, the
editorial transitions and administrative issues have caused some recent delays. Be
assured that we are handling it and the production will soon be back on track.

As usual, do not hesitate to contact me directly at crux-editors@cms.math.ca.

Kseniya Garaschuk

Crux Mathematicorum, Vol. 40(2), February 2014
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THE CONTEST CORNER
No. 22

Robert Bilinski

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’un
concours mathématique de niveau secondaire ou de premier cycle universitaire, ou en
ont été inspirés. Nous invitons les lecteurs à présenter leurs solutions, commentaires
et généralisations pour n’importe quel problème. Veuillez s’il vous plâıt àcheminer vos
soumissions à crux-contest@cms.math.ca ou par la poste à l’adresse figurant à l’endos
de la page couverture arrière. Les soumissions électroniques sont généralement préférées.

Comment soumettre une solution. Nous demandons aux lecteurs de présenter
chaque solution dans un fichier distinct. Il est recommandé de nommer les fichiers de
la manière suivante : Nom de famille Prénom Numéro du problème (exemple : Trem-
blay Julie 1234.tex). De préférence, les lecteurs enverront un fichier au format LATEX et
un fichier pdf pour chaque solution, bien que les autres formats soient aussi acceptés. Nous
acceptons aussi les contributions par la poste. Le nom de la personne qui propose une so-
lution doit figurer avec chaque solution, de même que l’établissement qu’elle fréquente,
sa ville et son pays ; chaque solution doit également commencer sur une nouvelle page.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au rédacteur au plus tard le 1er juin 2015 ; toutefois, les solutions reçues après cette
date seront aussi examinées jusqu’au moment de la publication.

Chaque problème est présenté en anglais et en français, les deux langues officielles du
Canada. Dans les numéros 1, 3, 5, 7 et 9, l’anglais précédera le français, et dans les
numéros 2, 4, 6, 8 et 10, le franais précédera l’anglais. Dans la section Solutions, le
problème sera écrit dans la langue de la première solution présentée.

CC106. En chaque sommet d’un tétraèdre régulier de côté 3, on découpe une
pyramide de façon que la surface de la découpe soit un triangle équilatéral. Les
quatre triangles équilatéraux ainsi obtenus ont tous des dimensions différentes.
Quelle est la longueur totale des arêtes du solide ainsi tronqué ?

CC107. Dans un triangle ABC rectangle en B tel que BC = 1, on place D
sur le côté AC pour que AD = AB = 1

2 . Quelle est la longueur de DC ?

CC108. Dans un repère orthonormé, la droite y = 5x coupe la parabole y = x2

au point A. La perpendiculaire à OA en O coupe la parabole en B. Quelle est l’aire
du triangle OAB ?

CC109. Soit E l’ensemble des réels x pour lesquels les deux membres de
l’égalité sont définis :

cot 8x− cot 27x =
sin kx

sin 8x sin 27x
.

Copyright c© Canadian Mathematical Society, 2015
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Si cette égalité tient pour tous les x dans E, que vaut k ?

CC110. Quel est le nombre de solutions réelles de l’équation :

|1 + x− |x− |1− x||| = | − x− |x− 1||.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CC106. At each summit of a regular tetrahedron of side length 3, we cut off
a pyramid such that the cut-off surface makes an equilateral triangle. The four
equilateral triangles thus obtained have all different dimensions. What is the total
length of the edges of the solid thus truncated ? Provide a proof.

CC107. In a right triangle ABC with right angle at B and BC = 1, we place
D on side AC such that AD = AB = 1

2 . What is the length of DC ?

CC108. In an orthonormal system, the line with equation y = 5x crosses the
parabola with equation y = x2 in point A. The perpendicular to OA at O intersects
the parabola at B. What is the area of triangle AOB ?

CC109. Let E be the set of reals x for which the two sides of the following
equality are defined :

cot 8x− cot 27x =
sin kx

sin 8x sin 27x
.

If this equality holds for all the elements of E, what is the value of k ?

CC110. What is the number of real solutions to the equation :

|1 + x− |x− |1− x||| = | − x− |x− 1||.

Crux Mathematicorum, Vol. 40(2), February 2014



THE CONTEST CORNER / 53

CONTEST CORNER
SOLUTIONS

CC56. From the set of consecutive integers {1, 2, 3, . . . , n}, three integers that
form a geometric sequence are deleted. The sum of the integers remaining is 6125.
Determine the smallest value of n and all three-term geometric sequences that
make this possible.

Originally 1996 Invitational Mathematics Challenge, Grade 11, problem 5.

We present the solution by Konstantine Zelator.

We know that 1 + 2 + 3 + · · ·+ n = n(n+1)
2 and that a, ar, ar2 are the terms of a

geometric sequence. Thus a + ar + ar2 + 6125 = n(n+1)
2 and n(n+1)

2 > 6125. The
smallest value of n which works is 111. This means that a(1 + r + r2) = 91. We
have two cases.

Case 1 : r is a positive integer.

Then, both a and r2 + r + 1 are natural numbers. Since 91=7×13, we get the
following : a = 1, r = 9, or a = 7, r = 3, or a = 13, r = 2.

Case 2 : r > 1 and r is a fraction.

This means that r = d
c , where c and d are relatively prime positive integers with

c ≥ 2 and d ≥ 3. Then a(1 + d
c + d2

c2 ) = 91 or a(d2 + cd+ c2) = 91c2.

Since ar2 is an integer, we know ad2

c2 is an integer and because c does not divide
d, c2 divides a. Let a = c2k for some positive integer k. Then k(d2 + cd+ c2) = 91
and since we know c ≥ 2 and d ≥ 3 giving us d2 + cd + c2 ≥ 19. Thus k = 1 and
d2 + cd+ c2 = 91. The only solution is d = 6 and c = 5 and a = 25.

Therefore there are four 3-term sequences that satisfy the conditions :

1, 9, 81 7, 21, 63 13, 26, 52 25, 30, 36.

CC57. Triangle DEF is acute. Circle C1 is drawn with DF as its diameter and
circle C2 is drawn with DE as its diameter. Points Y and Z are on DF and DE
respectively so that EY and FZ are altitudes of ∆DEF . EY intersects C1 at P ,
and FZ intersects C2 at Q. EY extended intersects C1 at R, and FZ extended
intersects C2 at S. Prove that P , Q, R, and S are concyclic points.

Originally 2002 Canadian Open Mathematics Challenge, problem B4.

Solved by M. Bataille ; S. Muralidharan ; and Z. Burnett. We present the solution
by S. Muralidharan.

We will show that the points P,Q,R and S lie on a circle with centre D.

Copyright c© Canadian Mathematical Society, 2015
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Let ∠EDF be denoted by D, length DF = y and length DE = z. Since DF
is the diameter of the circle C1 and EY is perpendicular to DF , it follows that
DP = DR. Now, DY = z cosD and O1P = O1D = y

2 . From the right-angled
triangle PY O1, we get :

PY 2 = O1P
2 −O1Y

2 =
y2

4
−
(y

2
− z cosD

)2
= yz cosD − z2 cos2D.

From right-angled triangle DPY , we have :

DP 2 = PY 2 +DY 2 = yz cosD − z2 cos2D + z2 cos2D = yz cosD.

Thus, we have DP = DR = yz cosD.

By symmetry, if we use the above argument with the circle C2, we get

DQ = DS = yz cosD.

Thus P,Q,R and S lie on a circle with centre D and radius yz cosD.

CC58. Find all real values of x, y and z such that

x−√yz = 42

y −
√
zx = 6

z −√xy = −30 .

Originally problem B4 of 1997 Canadian Open Mathematics Challenge.

Solved by Š. Arslanagić ; M. Bataille ; M. Coiculescu ; J. L. Dı́az-Barrero ; D.
Văcaru ; E. Wang ; K. Zelator ; and T. Zvonaru. We present the solution of Titu
Zvonaru.

The first and second equation imply x, y > 0, then from xz > 0, we conclude
z > 0. Hence we make a substitution x = a2, y = b2, z = c2. Our system becomes

a2 − bc = 42, b2 − ac = 6, c2 − ab = −30. (1)

Subtracting the second equation from the first equation, and subtracting the third
from the second gives us the following two equations :

(a− b)(a+ b+ c) = 36, (2)

(b− c)(a+ b+ c) = 36. (3)

Hence a − b, b − c and a + b + c are all non-zero and a − b = b − c. This implies
a = 2b− c. Substituting this into (1) yields

4b2 − 5bc+ c2 = 42, (4)

Crux Mathematicorum, Vol. 40(2), February 2014



THE CONTEST CORNER / 55

b2 − 2bc+ c2 = 6. (5)

From (5), b − c = ±
√

6, and hence from (4), c = ±
√

6. We then conclude the
solutions to the system (1) are

(−3
√

6,−2
√

6,−
√

6), (3
√

6, 2
√

6,
√

6),

which each yield x = 54, y = 24, z = 6.

CC59. Nine people are practicing the triangle dance, which is a dance that
requires a group of three people. During each round of practice, the nine people
split off into three groups of three people each, and each group practices inde-
pendently. Two rounds of practice are different if there exists some person who
does not dance with the same pair in both rounds. How many different rounds of
practice can take place ?

Originally Question 3 of 2013 Stanford Math Tournament, Team test.

One incorrect solution was received.

CC60. How many integer solutions are there to

a20 + a0a1 + a21 + a1a2 + · · ·+ a2009a2010 + a22010 = 1?

Originally 2010 APICS Math Competition, Question 5.

Solved by Richard Hess, whose solution we present below.

We consider the more general equation, where 2010 is replaced by an arbitrary n.
Then, multiplying the equation by 2, we get

(0 + a0)2 + (a0 + a1)2 + (a1 + a2)2 + · · ·+ (an−1 + an)2 + (an + 0)2 = 2.

Define b0 = a0, b1 = a0 + a1, · · · , bk = ak−1 + ak, · · · , bn+1 = an. Since our ai are
integers, so will the bi. It follows that exactly two of the bi will be nonzero. There

are (n+1)(n+2)
2 many ways to choose k < ` so that bk, b` 6= 0.

Notice that b2k, b
2
` = 1 so bk = ±1. Notice that once we choose ak then all other

ai are decided : a0 = a1 = · · · = ak−1 = 0, ak = −ak+1 = · · · = (−1)`−k−1a`−1,
a` = · · · = an = 0. It follows then that ak = ±1, so there are only two possible

choices for ak. So the total number of solutions is N = 2 (n+1)(n+2)
2 = (n+1)(n+2).

Since n = 2010, we see that N = 2011 · 2012 = 4046132.

Copyright c© Canadian Mathematical Society, 2015
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THE OLYMPIAD CORNER
No. 320

Nicolae Strungaru

Les problèmes présentés dans cette section ont déjà été présentés dans le cadre d’une
olympiade mathématique régionale ou nationale. Nous invitons les lecteurs à présenter
leurs solutions, commentaires et généralisations pour n’importe quel problème. Veuillez
s’il vous plâıt àcheminer vos soumissions à crux-olympiad@cms.math.ca ou par la poste
à l’adresse figurant à l’endos de la page couverture arrière. Les soumissions électroniques
sont généralement préférées.

Comment soumettre une solution. Nous demandons aux lecteurs de présenter
chaque solution dans un fichier distinct. Il est recommandé de nommer les fichiers de
la manière suivante : Nom de famille Prénom Numéro du problème (exemple : Trem-
blay Julie 1234.tex). De préférence, les lecteurs enverront un fichier au format LATEX et
un fichier pdf pour chaque solution, bien que les autres formats soient aussi acceptés. Nous
acceptons aussi les contributions par la poste. Le nom de la personne qui propose une so-
lution doit figurer avec chaque solution, de même que l’établissement qu’elle fréquente,
sa ville et son pays ; chaque solution doit également commencer sur une nouvelle page.

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au rédacteur au plus tard le 1er juin 2015 ; toutefois, les solutions reçues après cette
date seront aussi examinées jusqu’au moment de la publication.

Chaque problème est présenté en anglais et en français, les deux langues officielles du
Canada. Dans les numéros 1, 3, 5, 7 et 9, l’anglais précédera le français, et dans les
numéros 2, 4, 6, 8 et 10, le franais précédera l’anglais. Dans la section Solutions, le
problème sera écrit dans la langue de la première solution présentée.

La rédaction souhaite remercier d’avoir traduit les problèmes.

OC166. Soit {a1, a2, · · · , a10} = {1, 2, · · · , 10}. Déterminer la valeur maximale
de

10∑
n=1

(na2n − n2an) .

OC167. Déterminer toutes les fonctions f : R→ R, telles que

(x− 2)f(y) + f(y + 2f(x)) = f(x+ yf(x))

pour tout x, y ∈ R.

OC168. Soit ABCD un carré. Déterminer tous les points P dans le plan,
différents de A,B,C,D, tels que

∠APB + ∠CPD = 180◦ .

Crux Mathematicorum, Vol. 40(2), February 2014
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OC169. Déterminer tous les entiers positifs n ≥ 2 tels que, pour tous les entiers
0 ≤ i, j ≤ n, les nombres i+ j et

(
n
i

)
+
(
n
j

)
ont la même parité.

OC170. Soit ABC un triangle. Les bissectrices des angles ∠CAB et ∠ABC
intersectent les segments BC et AC à D et E respectivement. Démontrer que

DE ≤ (3− 2
√

2)(AB +BC + CA) .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

OC166. Let {a1, a2, · · · , a10} = {1, 2, · · · , 10} . Find the maximum value of

10∑
n=1

(na2n − n2an) .

OC167. Find all functions f : R→ R such that

(x− 2)f(y) + f(y + 2f(x)) = f(x+ yf(x))

for all x, y ∈ R.

OC168. Let ABCD be a square. Find the locus of points P in the plane,
different from A,B,C,D such that

∠APB + ∠CPD = 180◦ .

OC169. Find all positive integers n ≥ 2 such that for all integers 0 ≤ i, j ≤ n
the numbers i+ j and

(
n
i

)
+
(
n
j

)
have the same parity.

OC170. Let ABC be a triangle. The internal bisectors of angles ∠CAB and
∠ABC intersect segments BC, respectively AC at D, respectively E. Prove that

DE ≤ (3− 2
√

2)(AB +BC + CA) .

Copyright c© Canadian Mathematical Society, 2015
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OLYMPIAD SOLUTIONS

OC106. Find all the positive integers n for which all the n digit integers
containing n− 1 ones and 1 seven are prime.

Originally question 3 from Macedonia National Olympiad 2011.

Solved by R. Hess; D. E. Manes; and D. Văcaru. We give two solutions.

Solution 1, by David E. Manes.

If n = 1 then the number is 7 which is prime.

If n = 2 then the only two possibilities are 71 or 17, which are both primes.

We claim that there is no n ≥ 3 which works. To see this, we look at the remainder
of n when divided by 6.

If n = 6k or n = 6k + 3, the sum of the digits of all these numbers is n+ 6 which
is divisible by 3. Therefore, none of the numbers is prime.

If n = 6k+1 with k ≥ 1, then since 111111 = 7∗11∗13, it follows that the number

7 111 . . . 1︸ ︷︷ ︸
6k

is divisible by 7, and strictly larger than 7. Therefore, it is not prime.

If n = 6k+ 2, then, as n > 2 it follows that k ≥ 1. Then n = 6k′+ 8 where k′ ≥ 0.
Then, as 11171111 is a multiple of 7, it follows that

11171111 111 . . . 1︸ ︷︷ ︸
6k′

is divisible by 7, and therefore is not prime.

If n = 6k + 4, then since 7111 = 13 ∗ 547, it follows that

7111 111 . . . 1︸ ︷︷ ︸
6k

is divisible by 13, hence not prime.

Finally, if n = 6k + 5, then since 11711 is a multiple of 7, it follows that

11711 111 . . . 1︸ ︷︷ ︸
6k′

is divisible by 7, and therefore is not prime.

Solution 2, by Richard I. Hess.

It is easy to see that n = 1, n = 2 work.

Crux Mathematicorum, Vol. 40(2), February 2014
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Case n = 3 doesn’t work because all numbers are divisible by 9.

Case n = 4 doesn’t work because 1711 = 29 ∗ 59.

Case n = 5 doesn’t work because 11711 = 7 ∗ 1763.

We now prove that no n ≥ 6 works. First, let us observe that for each n every
number has the form

111 . . . 1︸ ︷︷ ︸
n

+6 ∗ 10k ,

for some 1 ≤ k ≤ n. Next, note that

7| 111 . . . 1︸ ︷︷ ︸
n

if and only if 7| 999 . . . 999︸ ︷︷ ︸
n

if and only if 7|10n − 1.

This is equivalent to 10n ≡ 1 (mod 7) ⇔ 6 = ord7(10)|n. We split now the
problem in two cases.

Case 1: 6|n. Here all the numbers are divisible by 3, and hence none is prime.

Case 2: 6 - n. In this case, we saw above that 7 - 111 . . . 1︸ ︷︷ ︸
n

. Therefore, 111 . . . 1︸ ︷︷ ︸
n

is

invertible modulo 7. As 10 is a primitive root modulo 7, there exists a 1 ≤ k ≤
6 ≤ n such that

111 . . . 1︸ ︷︷ ︸
n

≡ 10k (mod 7) ,

Therefore, for this k, 7 divides 111 . . . 1︸ ︷︷ ︸
n

+6 ∗ 10k and hence this number is not

prime.

It follows that n = 1 or n = 2.

OC107. ABC is a triangle of perimeter 4. Point X is marked on the ray AB
and point Y is marked on the ray AC such that AX = AY = 1. BC intersects
XY at M . Prove that one of the triangles ABM or ACM has perimeter 2.

Originally question 4 from Russia National Olympiad 2012, Grade 10 Day 1.

Solved by Michel Bataille whose solution we present below.

Let BC = a,CA = b, AB = c. From the hypotheses, a = 4− b− c and

−−→
AX =

1

c

−−→
AB,

−→
AY =

1

b

−→
AC .

In real coordinates relative to (A,B,C), we have

X = (c− 1 : 1 : 0), Y = (b− 1 : 0 : 1), XY : x+ y(1− c) + z(1− b) = 0

so that M = (0 : 1− b : c− 1). Since M is interior to segment BC, 1− b and c− 1
must have the same sign.

Copyright c© Canadian Mathematical Society, 2015
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Without loss of generality, we suppose that c > 1 and b < 1 in what follows. Then

(c− b)
−−→
BM = (c− 1)

−−→
BC

and
(c− b)

−−→
CM = (1− b)

−−→
CB,

so that

(c− b)BM = (c− 1)a = (c− 1)(4− b− c), (6)

(c− b)CM = (1− b)a = (1− b)(4− b− c) . (7)

Also,

(c− b)
−−→
AM = (1− b)

−−→
AB + (c− 1)

−→
AC

so that

(c− b)2AM2 = (1− b)2c2 + (c− 1)2b2 + (1− b)(c− 1)(2
−−→
AB ·

−→
AC)

with

2
−−→
AB ·

−→
AC = b2 + c2 − a2 = b2 + c2 − (4− b− c)2 = 8b+ 8c− 2bc− 16 .

A short calculation gives (c− b)2AM2 = (3b+ 3c− 2bc− 4)2, hence

(c− b)AM = |3b+ 3c− 2bc− 4| . (8)

Now, if 3b+ 3c− 2bc− 4 ≥ 0, then using (6), (7) and (8) , we obtain

(c−b)(AM+AC+MC) = 3b+3c−2bc−4+b(c−b)+(1−b)(4−b−c) = 2(c−b) ,

and the perimeter of AMC is 2.

If 3b+ 3c− 2bc− 4 < 0, then similarly,

(c−b)(AM+AB+MB) = −3b−3c+2bc+4+c(c−b)+(c−1)(4−b−c) = 2(c−b) ,

and the perimeter of AMB is 2. The result follows.

OC108. Determine all functions f : R 7→ R such that

2f(x) = f(x+ y) + f(x+ 2y)∀x ∈ R, y ∈ [0,∞) .

Originally question 1 from Romania Team Selection Test 2011, Day 1.

Solved by M. Bataille; D. Văcaru; and T. Zvonaru and N. Stanciu. We give the
common solution of Titu Zvonaru and Neculai Stanciu.

If we replace y by 2y in the given relation we get

2f(x) = f(x+ 2y) + f(x+ 4y)∀x ∈ R, y ∈ [0,∞) .

Crux Mathematicorum, Vol. 40(2), February 2014
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Therefore, for all x ∈ R, y ∈ [0,∞) we have

f(x+ y) = 2f(x)− f(x+ 2y) = f(x+ 4y) .

Replacing x by x− y we get

f(x) = f(x+ 3y)∀x ∈ R, y ∈ [0,∞) .

Then, if a < b are any two real numbers, by setting x = a and y = b−1
3 we get

f(a) = f(b) .

This proves that f is a constant function. Conversely, it is easy to check that all
constant functions satisfy the given condition.

OC109. Let a1, a2, . . . , an, . . . be a permutation of the set of positive integers.
Prove that there exist infinitely many positive integers i so that gcd(ai, ai+1) ≤ 3

4 i.

Originally question 2 from China Team Selection 2011, test 3 Day 2.

No solution was received to this problem.

OC110. Let G be a graph, not containing K4 as a subgraph. If the number
of vertices is 3k, with k integer, what is the maximum number of triangles in G?

Originally question 3 from Mongolia National Olympiad 2011, Team Selection Test
Day 2.

Solved by Oliver Geupel. We present his solution below.

We prove that the maximum number of triangles is k3.

First, we give an example of a graph G with k3 triangles. The set of 3k vertices
of G is split into three subsets of cardinality k each. Every vertex of G has an
edge to every vertex in the two other subsets, but has no edge to any vertex in its
own subset. [Editor’s Comment: G is called the complete tri-partite graph and is
usually denoted by Kk,k,k.] Clearly, G contains k3 triangles but does not contain
K4 as a subgraph.

It remains to show that k3 is also an upper bound.

Let G be a graph with 3k vertices, not containing K4 as a subgraph. We claim
that the number of triangles in G does not exceed k3. Our proof is by induction
on the number k.

For k = 0 the claim is obviously true.

Now let us assume that k ≥ 1 and that the claim holds true for the number k− 1.

If G does not contain a triangle then there is nothing to prove. Otherwise consider
any triangle in G. The set of 3k vertices of G is split into the subset V containing
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the three vertices of the triangle and the subset W of the 3(k − 1) remaining
vertices. The set T of triangles in G is split into four subsets

• the set T1 of triangles with three vertices in V ,

• the set T2 of triangles with three vertices in W ,

• the set T3 of triangles with one vertex in V and two vertices in W and

• the set T4 of triangles with two vertices in V and one vertex in W .

Clearly, |T1| = 1.

The node set W induces a subgraph H of G which satisfies the induction hypoth-
esis. Therefore, H contains at most (k− 1)3 triangles by induction, which implies
|T2| ≤ (k − 1)3.

Consider a triangle in T3. If an edge of H would be combined with two distinct
vertices in V to form two triangles, then these four vertices would constitute a
4-clique, which is impossible by hypothesis. Hence, every edge of H can occur in
at most one triangle in T3. Turan’s theorem states that a Kr+1-free graph with n

vertices has at most
(r − 1)n2

2r
edges. Thus, H has not more than 3(k− 1)2 edges,

so that |T3| ≤ 3(k − 1)2.

Consider a triangle in T4. If a vertex in W would occur in two distinct triangles in
T4 then this vertex, being combined with the three vertices in V , would constitute
a 4-clique, which is impossible by hypothesis. Hence, every vertex in W can occur
in at most one triangle in T4, so that |T4| ≤ 3(k − 1).

Putting everything together, we obtain

|T | = |T1|+ |T2|+ |T3|+ |T4| ≤ 1 + (k − 1)3 + 3(k − 1)2 + 3(k − 1) = k3,

which completes the induction.
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BOOK REVIEWS
Robert Bilinski

Solving Mathematical Problems: a personal perspective by Terence Tao
ISBN: 978-0-19-920560-8
Oxford University Press, 2006, $35 (US), 103pages

Reviewed by Robert Bilinski, Collège Montmorency

Terence Tao is now a world renowned Fields Prize winning mathematician, but
his exploits started much earlier as he participated for the first time in the IMO
in 1986 at the tender age of 10. He won a bronze medal that year. He represented
Australia again the next two years and won his next two IMO medals, first a
silver medal then a gold. He is, to this date, the youngest medal winner ever
for his bronze medal and the youngest gold medal winner. After that, he started
university and retired from his IMO career at the age of 13. The first edition of
this book was written by him at the age of 15 and was reworked in 2006.

Curiously, it has never been reviewed in Crux. I dis-
covered this book by chance as I received the helm of
the book review column and found it a fitting start
for my hopefully long lasting return to the Crux edi-
torial Board. I previously was Skoliad editor and am
returning as Contest Corner Editor, both of which
focus on problems oriented towards younger prob-
lem solvers. This book embodies the spirit of Crux
and the inclusion of all problem solvers, the sharing
of mathematical gems and of the beauty of their so-
lutions. This book differs from other contest books,
textbook, vulgarization of mathematics or any other
general interest books I have read. It could have
been taken out of a “Problem of the Month” or
“Problem solver’s toolkit” sections of Crux. The
aim of the book is not to show solutions to many problems; it is to highlight
the thought process behind problem solving: rewriting, trial and error, backtrack-
ing, simplifying, generalizing and “sideways thinking” (changing math fields, using
geometry in algebra or algebra in geometry...).

Through a limited list of typical contest problems handpicked by Tao, we are taken
on a tour of problem solving. The chapters are organized around the techniques
used in the problem solving: The first chapter deals with general techniques, the
next chapters go through number theory, algebra and analysis, Euclidean geom-
etry, then analytic geometry to end up with problems necessitating a multidisci-
plinary approach. But it is not a long list of problems per chapter that is exposed.
Tao analyzes each problem in a real-time fashion that involves dead-ends and
brainstorming bouts, and slowly builds up to a full resolution of each problem.
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To give an example, the problem in the first chapter is centred on solving a tri-
angle whose sides are in an arithmetic progression. Does one then go for algebra,
geometry or number theory? Through an 8 step process specific to the situation,
Tao guides us to a solution that ultimately borrows a bit from each. There are also
a few problems in each section whose solutions are not provided, most of which
were composed by the author, that are left as exercises for the readers to utilize
the reasoning applied in that section.This book is not for you if you are looking
for a compendium of 300 olympiad level problems, or for a pared down optimal
solution guide or a book that gives out recipes for mathematical Olympic gold.
This book is akin to a master class of problem solving, but given by a 15 year old
virtuoso, full of maturity and skill, but also fun and simplicity.

As a problem solver, I enjoyed thoroughly reading Tao’s perspective on problem
solving and his analysis of each problem. Especially since it was written when he
was only 15. I encourage our younger readers to pick up this book to get an insight
into problem solving. I also encourage our more seasoned readers to be tempted:
despite the fact that we each have our own styles, in problems we like and in the
way we solve them, it is worthwhile to gain insight into the workings of one of the
great mathematical minds of our age. All in all, the tone and style of the book
make it eminently readable and down to earth.

Good reading!

A Taste Of Mathematics
Aime-T-On les Mathématiques

ATOM

ATOM Volume VIII: Problems for Mathematics Leagues III
by Peter I. Booth, John McLoughlin and Bruce L.R. Shawyer.

This volume is a follow up to our previous publications (Atom 6 and Atom 3) on Prob-

lems for Mathematics Leagues. It is the fourth book published by the authors based

on their cooperation of devising problems for the Newfoundland and Labrador Senior

Mathematics League over a period of more than 16 years. Since the publication of the

first ATOM volume, other mathematics leagues, based on our model, have sprung up in

other parts of Canada. We are always pleased to assist other leagues, and are prepared

to provide current games to help them get started.

There are currently 13 booklets in the series. For information on tiles in this series
and how to order, visit the ATOM page on the CMS website:

http://cms.math.ca/Publications/Books/atom.
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Ramsey’s Theory Through Examples,

Exercises, and Problems: Part I
Veselin Jungić

1 Introduction

Ramsey theory is a contemporary mathematical field that is part of combinatorics.
There are applications of Ramsey theory in number theory, geometry, topology, set
theory, logic, ergodic theory, information theory, and theoretical computer science.
In the words of Imre Leader [3],

The fundamental kind of question Ramsey theory asks is: can one
always find order in chaos? If so, how much? Just how large a slice of
chaos do we need to be sure to find a particular amount of order in it?

The starting point in studying Ramsey theory is the ‘pigeonhole principle’:

Theorem 1 Suppose you have k pigeonholes and n pigeons to be placed in them.
If n > k, then at least one pigeonhole contains at least two pigeons. More generally,
there is at least one pigeonhole containing at least dn/ke pigeons.

Exercise 1 Use the pigeonhole principle to prove that, for any natural number n,
if a1, a2, . . . , an+1 are distinct natural numbers between 1 and 2n, then there exist
i, j, i 6= j, such that ai divides aj.

Exercise 1 is known as one of Erdős’s favourite questions to ask of an ε. 1

In Ramsey theory, it is often possible to state difficult problems in a way that any
numerically literate person can understand them. As an example, here is a long
standing open problem [2]:

Problem 1 If the set of natural numbers is partitioned in a finite number of cells,
must there exist x, y (with x and y not both equal to 2) such that x + y and xy
belong to the same cell?

Ramsey theory is named after British mathematician, economist, and philosopher
Frank Ramsey. He was born in 1903 in Cambridge, England, into a family of a
Cambridge mathematics professor. The oldest of four siblings, Ramsey married
when he was 22 years old and had two daughters. Ramsey died in 1930 at the age
of 27. His youngest sister, Margaret Paul [4], suggested that the probable cause
of his death was a liver illness brought on by the Hepatitis B virus that Ramsey
contracted while swimming in the River Cam. Ramsey was a lifelong literature and
music enthusiast and he enjoyed hiking during his vacations. Ramsey significantly

1 In mathematics, the Greek letter ε is often used to denote a small positive real number.
Paul Erdős, a famous Hungarian mathematician and the father of Ramsey theory, used to call
young people “epsilons”.
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contributed to the fields of mathematics, economics, and philosophy while only in
his twenties.

2 Ramsey’s Theorem

As an introduction to Ramsey’s theorem, we look at the following exercises. Con-
sider the global population at the present and imagine that you can form all
possible groups of, for example, 10 people. Next, partition this newly formed set
of groups of 10 people in, for example, 100 mutually disjoint cells following any
criterion you prefer.

Exercise 2 Use the website called Worldometers 2 to find the estimate of the
size of the current global population. Call this estimate m.

Exercise 3 Use your estimate m from Exercise 2 to find the number of different
groups of 10 people. Call this number g10 and write it in scientific notation.

Exercise 4 Use your estimate m from Exercise 2 to find the number of different
groups of 10 people that any given person would belong to. Write your answer in
scientific notation.

Exercise 5 Use the number g10 from Exercise 3 to find the number of ways in
which you can partition the set of groups of 10 people in 100 mutually disjoint
cells. Approximate your answer with a power of 10.

The enormous size of the number obtained in Exercise 5 illustrates what Leader
meant when he asked “can one always find order in chaos?” Is there a pattern that
is unavoidable regardless in which way we partition the set of groups of 10 people
in 100 mutually disjoint cells? For example,

Question 1 Can you be sure that for any fixed partition there would be 1000
people so that all groups of 10 that contain only individuals from those chosen
1000 people belong to the same partition cell?

The answer to Question 1 is, “Yes, if there were enough people on Earth,” since
according to Ramsey’s Theorem:

Theorem 2 Given any r, n, and µ we can find an m0 such that, if m ≥ m0 and
the r-combinations of any Γm are divided in any manner into µ mutually exclusive
classes Ci (i = 1, 2, . . . , µ), then Γm must contain a sub-class ∆n such that all the
r-combinations of members of ∆n belong to the same Ci.

In our example r = 10, n = 1000, µ = 100, and m represents the size of the
global population Γm at a certain moment in time. The phrase “r-combinations”
in the theorem matches our phrase “the set of groups of 10 people”. Moreover, the
phrase “a sub-class ∆n such that all the r-combinations of members of ∆n belong
to the same Ci” refers to our “1000 people so that all groups of 10 that contain

2 http://www.worldometers.info/world-population/
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only individuals from those chosen 1000 people belong to the same partition cell”.
For these values of r, n, and µ, the value of the number m0 is unknown, but almost
certainly the world population will never reach the required m0.

The above theorem by Frank Ramsey appears in On a Problem of Formal Logic
in the Proceedings of the London Mathematical Society in 1930 [5]. Ron Graham
and Bruce Rothschild, pioneers in Ramsey theory, described Ramsey’s theorem in
the following way [1]:

The theorem is a profound generalization of the ‘pigeonhole principle’
or ‘Dirichlet box principle’. As is the case with many beautiful ideas
in mathematics, Ramsey’s theorem extends just the right aspect of an
elementary observation and derives consequences which are extremely
natural although far from obvious.

Exercise 6 For which values of r and n does Ramsey’s theorem become the ‘pi-
geonhole principle’?

3 Ramsey’s Theorem: Friends and Strangers

Consider the following so-called ‘dinner party problem’:

Problem 2 How many people must be at dinner to ensure that there are either
three mutual acquaintances or there are three mutual strangers?

Exercise 7 For which values of r, n, and µ does Ramsey’s theorem become the
‘party problem’?

To solve Problem 2, we use so-called edge 2-colourings of complete graphs on 5 and
6 vertices, K5 and K6. The complete graph Km on m vertices is represented by a
drawing in which we first draw m points in the plane so that no three points are
collinear and then we draw a line segment between each pair of those m points.
The points are called vertices and the line segments are called edges (Figure 1).

Figure 1: Complete graphs K2, K3, K4, K5 and K6

Exercise 8 Use two colours, say red and blue, to colour the edges of K6. Each
edge can be coloured by only one colour. (In more mathematical terms, you are
asked to perform an edge 2-colouring of K6.)
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Note that in Exercise 8 you have two colours available, but you may wish to use
only one colour.

Question 2 How many different edge 2-colourings of K6 are there?

Question 3 Can you find a monochromatic triangle in your colouring; i.e., can
you find three edges coloured by the same colour that form a triangle? (Note that
any triangle represents K3.)

Problem 3 Does any edge 2-colouring of K6 yield a monochromatic K3?

Exercise 9 Explain in a short paragraph why Problem 2 and Problem 3 are equiv-
alent.

The answer to Problem 3 is, “Yes, it does.” To see this, follow these two steps.

Step 1: Suppose that you are given an edge 2-colouring of K6. Fix one
vertex. How many edges are coming out of this vertex? Based on which
theorem can you conclude that at least three of those edges will be of the
same colour?

Step 2: Consider all possible 2-colourings of the triangle determined by the
vertices adjacent by the three edges of the same colour to the originally fixed
vertex.

Exercise 10 Find an edge 2-colouring of K5 with no monochromatic triangles.

Exercise 11 Based on Exercises 7, 9, and 10 and the answer to Problem 3 con-
clude that, in the notation of Ramsey’s theorem, if r = µ = 2 and n = 3 then
m0 = 6. This fact is usually written R(3, 3) = 6 with the meaning that any
2-colouring of K6 yields a monochromatic K3 in the ‘first’ colour or a monochro-
matic K3 in the ‘second’ colour and that there is an edge 2-colouring of K5 with
no monochromatic triangles.

In general, for natural numbers s and t, s, t ≥ 2, we define the Ramsey number
R(s, t) as the minimum number n for which any edge 2-colouring of Kn in red and
blue contains a red Ks or a blue Kt.

Exercise 12 Find R(2, t) for any natural number t ≥ 2. What can you tell about
R(t, 2)?

Problem 4 Any graph with at least 6 vertices contains a complete subgraph on 3
vertices or an independent subgraph of 3 vertices (An independent subgraph of a
given graph consist of vertices of which no pair is adjacent).

Problem 5 True or False: Each 2-colouring of K6 yields at least two monochro-
matic triangles?
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Hints and comments

Exercise 1 For each i, write ai as ai = 2biqi, where qi is an odd number, and
consider the sequence of odd numbers {q1, . . . , qn+1} in [1, 2n].

Exercise 3 Note that g10 =
(
m
10

)
. Write this number in scientific notation.

Exercise 4 Note that this number is given by
(
m−1
9

)
.

Exercise 5 There are 100 cells and for each cell there are G =
(
g10
10

)
choices. Thus,

the number of ways is 100G = 102G. Use Exercise 4 to complete this exercise.

Problem 4 Suppose that a graph G with more than 6 vertices is given. Colour
all edges of the graph G red. Next, draw all missing edges and colour them blue.

Problem 5 There are 20 different triangles in K6. Colour the edges of K6 with
red and blue and call a triangle in K6 2-coloured if it is not monochromatic. Each
2-coloured triangle contains two 2-coloured angles, i.e., two angles with sides of
different colours. Conclude that the number of 2-coloured triangles is equal to
one half of the number of 2-coloured angles. Count the number of the 2-coloured
angles to see that the number of 2-coloured triangles is at most 18.
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Excerpt from The Math Olympian
Richard Hoshino

Editor’s Prologue. The Math Olympian is a novel by Richard Hoshino, himself
a former Olympian who today teaches mathematics at Quest University Canada.
The story traces the growth of Bethany MacDonald from an insecure and bullied
grade 5 student, who is unhappy in school, to a confident high schooler who is about
to write the Canadian Mathematical Olympiad and maybe realize her dream of
qualifying for the Canadian IMO team. The story begins as Bethany looks at the
first problem shortly after the contest starts, at 9:00 a.m.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Canadian Mathematical Olympiad, Problem #1:

Determine the value of:

9
1

1000

9
1

1000 + 3
+

9
2

1000

9
2

1000 + 3
+

9
3

1000

9
3

1000 + 3
+ · · ·+ 9

998
1000

9
998
1000 + 3

+
9

999
1000

9
999
1000 + 3

.

I stare at the first problem, not sure where to start.

I circle the first term in the expression of Problem #1, the one with the ugly
exponent 9

1
1000 . Am I actually supposed to calculate the 1000th root of 9? Without

a calculator, I know that’s not possible.

There has to be an insight somewhere. This is an Olympiad problem, and all
Olympiad problems have nice solutions that require imagination and creativity
rather than a calculator.

I re-read the question yet again, and confirm that I have to determine the following
sum:

9
1

1000

9
1

1000 + 3
+

9
2

1000

9
2

1000 + 3
+

9
3

1000

9
3

1000 + 3
+ · · ·+ 9

998
1000

9
998
1000 + 3

+
9

999
1000

9
999
1000 + 3

.

There are 999 terms in the sum, and each term is of the form 9x

9x+3 . In the first

term, x equals 1
1000 ; in the second term, x equals 2

1000 ; in the third term, x equals
3

1000 ; and so on, all the way up to the last term, where x equals 999
1000 .

In the entire expression, there’s only one doable calculation, the term right in the

middle. I know I can calculate 9
500
1000

9
500
1000 +3

, using the fact that 500
1000 = 1

2 .

Since raising a quantity to the exponent 1
2 is the same as taking its square root, I

see that:
9

500
1000

9
500
1000 + 3

=
9

1
2

9
1
2 + 3

=

√
9√

9 + 3
=

3

3 + 3
=

3

6
=

1

2
.
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But other than this, I’m not sure what to do. Twirling my pen and closing my
eyes, I concentrate, hoping for a spark.

One idea comes to mind: setting up a “telescoping series”. My mentor, Mr.
Collins, introduced me to this beautiful technique years ago at one of our Saturday
afternoon sessions at Le Bistro Café. Before explaining the concept to me, Mr.
Collins first gave me a simple question of adding five fractions:

Without using a calculator, determine
1

2
+

1

6
+

1

12
+

1

20
+

1

30
.

I solved Mr. Collins problem by finding the common denominator. In this case,
the common denominator is 60, the smallest number that evenly divides into each
of 2, 6, 12, 20, and 30. So the answer is:

1

2
+

1

6
+

1

12
+

1

20
+

1

30
=

30 + 10 + 5 + 3 + 2

60
=

50

60
=

5

6
.

And then I remembered Mr. Collins’ smile as he gave me another addition problem:

Determine
1

2
+

1

6
+

1

12
+

1

20
+

1

30
+

1

42
+

1

56
+

1

72
+

1

90

This time, it took me almost fifteen minutes to get the answer. Most of the
time was spent trying to figure out the common denominator, which I eventually
determined to be 2520. But it was a tedious process of checking and re-checking
all of my calculations.

After Mr. Collins congratulated me on getting the right answer, he pointed to the
nine fractions on my sheet of paper and asked if there was a pattern. After staring
at the numbers for a while, I saw it:

2 = 1× 2 6 = 2× 3 12 = 3× 4
20 = 4× 5 30 = 5× 6 42 = 6× 7
56 = 7× 8 72 = 8× 9 90 = 9× 10

Mr. Collins suggested I write 1
90 as the difference of two fractions: 1

90 = 1
9 −

1
10 .

He then asked whether there were any other terms in this expression that could
also be written as the difference of two fractions. I eventually saw that 1

2 = 1
1 −

1
2

and 1
6 = 1

2 −
1
3 .

Once I saw the pattern, I discovered this amazing solution, called a “telescoping

series”:
1

2
+

1

6
+

1

12
+

1

20
+

1

30
+

1

42
+

1

56
+

1

72
+

1

90
can be re-written as:Å

1

1
− 1

2

ã
+

Å
1

2
− 1

3

ã
+

Å
1

3
− 1

4

ã
+

Å
1

4
− 1

5

ã
+

Å
1

5
− 1

6

ã
+. . .+

Å
1

8
− 1

9

ã
+

Å
1

9
− 1

10

ã
.

This is just
1

1
− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+

1

4
− 1

5
+

1

5
− 1

6
+

1

6
− 1

7
+

1

7
− 1

8
+

1

8
− 1

9
+

1

9
− 1

10
.
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Since one negative fraction cancels a positive fraction with the same value, all the
terms in the middle get eliminated:

1

1
−

�
��1

2
+

�
��1

2
−

�
��1

3
+

�
��1

3
−

�
��1

4
+

�
��1

4
−

�
��1

5
+

�
��1

5
−

�
��1

6
+

�
��1

6
−

�
��1

7
+

�
��1

7
−

�
��1

8
+

�
��1

8
−

�
��1

9
+

�
��1

9
− 1

10
.

Like a giant telescope that collapses down to a small part at the top and a small
part at the bottom, this series collapses to the difference 1

1 −
1
10 , which equals 9

10 .
So the answer is 9

10 .

That day, Mr. Collins showed me several problems where the answer can be found
using a telescoping series, where a seemingly-tedious calculation can be solved with
elegance and beauty.

The key is to represent each term as a difference of the form x−y, where y is called
the “subtrahend” and x is called the “minuend”. From Mr. Collins’ examples, I
learned that the series telescopes every time the subtrahend of one term equals
the minuend of the following term.

As I recall that lesson with Mr. Collins many years ago, I’m hopeful that I can
use this technique to solve the first problem of the Canadian Math Olympiad. I
look at Problem #1 again, reminding myself of what I need to determine.

I start with the general expression 9x

9x+3 and try to write it down as the difference
of two functions, so that the subtrahend of each term equals the minuend of the
following term.

I try a bunch of different combinations to the difference to work out to 9x

9x+3 such

as the expression 1
3x −

1
3x+1 which almost works but not quite. I attempt other

combinations using every algebraic method I know. All of a sudden, I realize the
futility of my approach.

The denominator doesn’t factor nicely, so this approach cannot work. Oh no.

9:19 a.m.

I feel the first bead of sweat on my forehead, and wonder if I’m going to get another
“math contest anxiety attack”. I close my eyes and take a deep breath, knowing
that if I start to panic and lose focus, my chances of becoming a Math Olympian
are over.

Calm down, Bethany, calm down. There’s lots of time left. You can do this.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

To be continued in issue 4.

“The Math Olympian” was published by FriesenPress in January 2015. For more
information, please visit www.richardhoshino.com.
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PROBLEMS
Nous invitons les lecteurs à présenter leurs solutions, commentaires et généralisations
pour n’importe quel problème présenté dans cette section. De plus, nous les encourageons
à soumettre des propositions de problèmes. Veuillez s’il vous plâıt àcheminer vos soumis-
sions à crux-psol@cms.math.ca ou par la poste à l’adresse figurant à l’endos de la page
couverture arrière. Les soumissions électroniques sont généralement préférées.

Comment soumettre une solution. Nous demandons aux lecteurs de présenter
chaque solution dans un fichier distinct. Il est recommandé de nommer les fichiers de
la manière suivante : Nom de famille Prénom Numéro du problème (exemple : Trem-
blay Julie 1234.tex). De préférence, les lecteurs enverront un fichier au format LATEX
et un fichier pdf pour chaque solution, bien que les autres formats soient aussi acceptés.
Nous acceptons aussi les contributions par la poste. Le nom de la personne qui pro-
pose une solution doit figurer avec chaque solution, de même que l’établissement qu’elle
fréquente, sa ville et son pays; chaque solution doit également commencer sur une nou-
velle page.

Comment soumettre un problème. Nous sommes surtout à la recherche de problèmes
originaux, mais d’autres problèmes intéressants peuvent aussi être acceptables pourvu
qu’ils ne soient pas trop connus et que leur provenance soit indiquée. Normalement,
si l’on connâıt l’auteur d’un problème, on ne doit pas le proposer sans lui en deman-
der la permission. Les solutions connues doivent accompagner les problèmes proposés.
Si la solution n’est pas connue, la personne qui propose le problème doit tenter de
justifier l’existence d’une solution. Il est recommandé de nommer les fichiers de la
manière suivante : Nom de famille Prénom Proposition Année numéro (exemple : Trem-
blay Julie Proposition 2014 4.tex, s’il s’agit du 4e problème proposé par Julie en 2014).

Pour faciliter l’examen des solutions, nous demandons aux lecteurs de les faire parvenir
au rédacteur au plus tard le 1er juin 2015; toutefois, les solutions reçues après cette
date seront aussi examinées jusqu’au moment de la publication.

Chaque problème est présenté en anglais et en français, les deux langues officielles du
Canada. Dans les numéros 1, 3, 5, 7 et 9, l’anglais précédera le français, et dans les
numéros 2, 4, 6, 8 et 10, le français précédera l’anglais. Dans la section Solutions, le
problème sera écrit dans la langue de la première solution présentée.

Un astérisque (?) signale un problème proposé sans solution.

La rédaction remercie Rolland Gaudet, University College of Saint Boniface, d’avoir
traduit les problèmes.

3911. Proposé par Paul Bracken.

Soit x0 ∈ (0, 1− 1/a], où a > 1, et soit la suite définie par xn = xn−1− x2n−1 pour
n ∈ N. Démontrer que xn satisfait les inégalités

x0
anx0 + 1

< xn <
x0

nx0 + 1
, n ∈ N.
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3912. Proposé par Michel Bataille.

Soit ABC un triangle scalène aucun angle rectangle et soit H son orthocentre. Si
A1, B1 et C1 sont les mi points de BC, CA et AB respectivement, démontrer que
les orthocentres de HAA1, HBB1 et HCC1 sont colinéaires.

3913. Proposé par Ovidiu Furdui.

Calculer ∫ ∞
0

∫ ∞
0

dxdy

(ex + ey)2
.

3914. Proposé par George Apostolopoulos; generalisé par le comité de rédaction.

Soit ABC un triangle avec R le rayon du cercle circonscrit, r le rayon du cercle

inscrit et s le semi périmtre, tels que s = kr. Démontrer que
2k

3
√

3
<
R

r
<
k2 − 3

12
.

3915. Proposé par Marcel Chiriţă.

Soient M et N des points sur les côtés AB et AC, respectivement, du triangle
ABC, et posons O = BN ∩CM . Démontrer qu’il y a un nombre infini d’exemples
(pas affinement équivalents) tels que les surfaces des quatre régions MBO, BCO,
CNO et AMON sont toutes entières.

3916. Proposé par Nathan Soedjak.

Soient a, b, c des nombres réels positifs. Démontrer queÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
≥ 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.

3917. Proposé par Peter Y. Woo.

À partir d’un cercle Z, son centre O et un point A sur Z, et à l’aide d’une longue
règle non graduée, pouvez-vous dessiner:

i) des points B,C et D sur Z, tels que ABCD ets un carreé?

ii) le carreé AOBA′?

iii) les points B,W ′′,W et W ′ sur Z tels que les angles AOB, AOW ′′, AOW et
AOW ′ sont 90◦, 60◦, 45◦ and 30◦?

3918. Proposé par George Apostolopoulos.

Soient a, b et c des nombres réels positifs tels que a2 + b2 + c2 = 1. Démontrer que»
(ab)2/3 + (bc)2/3 + (ac)2/3 <

2 +
√

3

3
.

Crux Mathematicorum, Vol. 40(2), February 2014



PROBLEMS / 75

3919. Proposé par Michel Bataille.

Soit I le centre du cercle inscrit du triangle ABC. Le segment AI rencontre le
cercle inscrit à M ; la perpendiculaire à AM au point M intersecte BI à N . Si
P est un point sur la ligne AI, démontrer que PC est perpendiculaire à AI si et
seulement si PN est parallèle à BM .

3920. Proposé par Alina Ŝıntǎmǎrian.

Évaluer
∞∑

n=0

16n2 + 20n+ 7

(4n+ 2)!
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3911. Proposed by Paul Bracken.

Let x0 ∈ (0, 1− 1/a], where a > 1, and define the sequence xn = xn−1 − x2n−1 for
n ∈ N. Prove that xn satisfies the inequalities

x0
anx0 + 1

< xn <
x0

nx0 + 1
, n ∈ N.

3912. Proposed by Michel Bataille.

Let ABC be a scalene triangle with no right angle and H as its orthocenter. If
A1, B1 and C1 are the midpoints of BC, CA and AB respectively, prove that the
orthocenters of HAA1, HBB1 and HCC1 are collinear.

3913. Proposed by Ovidiu Furdui.

Calculate ∫ ∞
0

∫ ∞
0

dxdy

(ex + ey)2
.

3914. Proposed by George Apostolopoulos; generalized by the Editorial Board.

Let ABC be a triangle with circumradius R, inradius r and semiperimeter s, such

that s = kr. Prove that
2k

3
√

3
<
R

r
<
k2 − 3

12
.

3915. Proposed by Marcel Chiriţă.

Let M and N be points on the sides AB and AC, respectively, of triangle ABC,
and define O = BN∩CM . Show that there are infinitely many examples (that are
not affinely equivalent) for which the areas of the four regions MBO,BCO,CNO
and AMON are all integers.
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3916. Proposed by Nathan Soedjak.

Let a, b, c be positive real numbers. Prove thatÅ
ab

c

ã2
+

Å
bc

a

ã2
+
(ca
b

)2
≥ 3

Å
ab+ bc+ ca

a+ b+ c

ã2
.

3917. Proposed by Peter Y. Woo.

Given a circle Z, its center O, and a point A on Z, with only a long unmarked
ruler, and no compass, can you draw:

i) points B,C and D on Z so that ABCD is a square?

ii) the square AOBA′?

iii) the points B,W ′′,W and W ′ on Z such that angles AOB, AOW ′′, AOW
and AOW ′ are 90◦, 60◦, 45◦ and 30◦?

3918. Proposed by George Apostolopoulos.

Let a, b and c be positive real numbers such that a2 + b2 + c2 = 1. Prove that»
(ab)2/3 + (bc)2/3 + (ac)2/3 <

2 +
√

3

3
.

3919. Proposed by Michel Bataille.

Let I be the incentre of triangle ABC. The line segment AI meets the incircle
at M and the perpendicular to AM at M intersects BI at N . If P is a point of
the line AI, prove that PC is perpendicular to AI if and only if PN is parallel to
BM .

3920. Proposed by Alina Ŝıntǎmǎrian.

Evaluate
∞∑

n=0

16n2 + 20n+ 7

(4n+ 2)!
.
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SOLUTIONS
No problem is ever permanently closed. The editor is always pleased to consider
for publication new solutions or new insights on past problems.

3811. Proposed by Jung In Lee.

Determine all functions f : N → N such that for all positive integers a and b,
af(a+ b) + bf(a) + b2 is a perfect square.

No solutions were received for this problem. The problem remains open.

3812. Proposed by George Apostolopoulos.

Let ABCD be a parallelogram and P be a point on side BC. Let K, L, and M
be the centroids of triangles PAB, PAD and PCD, respectively. Prove that

[AKL] + [DLM ] = [BKMC],

where [·] represents the area.

Solved by AN-anduud Problem Solving Group; M. Bataille; P. De; N. Evgenidis;
O. Geupel; J. Heuver; O. Kouba; M. Modak; C. Mortici; C. Sánchez-Rubio; Skid-
more College Problem Solving Group; N. Stanciu and T. Zvonaru; E. Swylan; and
the proposer. We present the solution of Michel Bataille.

A

B
C

D

P

K

L

M

We use areal coordinates with reference to triangle ABC.

Let P = tB + (1− t)C where t ∈ [0, 1]. Observing that D = A−B + C, we have

3K = A+B + P = A+ (1 + t)B + (1− t)C
3L = A+ P +D = 2A+ (t− 1)B + (2− t)C

3M = A+ (t− 1)B + (3− t)C
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It follows that

[AKL] =
1

9
|δ1|[ABC],

[DLM ] =
1

9
|δ2|[ABC],

[BKM ] =
1

9
|δ3|[ABC],

[BMC] =
1

3
|δ4|[ABC],

where δi, i = 1, 2, 3, 4 are the following determinants, with columns from the areal
coordinates of the vertices:

δ1 =

∣∣∣∣∣∣
1 1 2
0 1 + t t− 1
0 1− t 2− t

∣∣∣∣∣∣ , δ2 =

∣∣∣∣∣∣
1 2 1
−1 t− 1 t− 1
1 2− t 3− t

∣∣∣∣∣∣ ,
δ3 =

∣∣∣∣∣∣
0 1 1
1 1 + t t− 1
0 1− t 3− t

∣∣∣∣∣∣ , δ4 =

∣∣∣∣∣∣
0 1 0
1 t− 1 0
0 3− t 1

∣∣∣∣∣∣ .
A simple calculation gives δ1 = 3− t, δ2 = 2 + t, δ3 = 2, δ4 = 1 and so

[AKL]+[DLM ] = (3−t+2+t)
[ABC]

9
=

5 · [ABC]

9
= [BKM ]+[BMC] = [BKMC].

3813. Proposed by Michel Bataille.

Find the smallest constant C such that the inequality

(a7 + b7 + c7)6 ≤ C(a6 + b6 + c6)7

holds for all real numbers a, b, c such that a+ b+ c = 0.

Solved by R. Barbara; R. Hess; O. Kouba; K.-W. Lau; N. Hodzić and S. Malikić;
C. Mortici; P. Perfetti; S. Wagon; and the proposer. There was one incomplete
solution. We present the solution of Roy Barbara, which is both efficient and
provides a generalization.

The answer is

(26 − 1)6

2(1 + 25)7
=

35 · 76

2 · 117
=

28588707

38974342
= 0.733526 . . .

We prove a more general result. Consider positive integers p and q both of which
are odd and m and n both of which are even that satisfy pm = qn. Then the
smallest constant C for which the inequality

(ap + bp + cp)m ≤ C(an + bn + cn)q
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holds for all real numbers a, b, c with a+ b+ c = 0 is

C0=̇
(2p − 2)m

(2n + 2)q
.

If abc = 0 the left member is 0 and the inequality holds for all positive C. Suppose
henceforth that abc 6= 0. Since a + b + c = 0, two of the variables have one sign
and the other the opposite. Since the expressions on both sides of the inequality
do not change if we replace each variable by its negative, we may suppose wolog
that a, b > 0 and c < 0. Furthermore, since both sides of the inequality are
homogeneous with degree pm = qn, we may suppose that a + b = 2. Therefore,
the given inequality is equivalent to

(2p − (ap + bp))m ≤ C(2n + an + bn)q

with a, b positive and summing to 2.

Using the fact that 2p − (ap + bp) ≥ 0 and the convexity of the function xk for
k ≥ 1, we have that

ap + bp ≥ 2

Å
a+ b

2

ãp
and

an + bn ≥ 2

Å
a+ b

2

ãn
,

whence

(2p − (ap + bp))m ≤ (2p − 2)m = C0(2n + 2)q

≤ C0(2n + an + bn)q.

Since equality occurs when a = b = 1, we conclude that C0 is the minimum value
of C.

Editor’s comments. Because of the condition a + b + c = 0 and the homogeneity
of the inequality, many solvers reduced the problem to maximizing a function of a
single variable, for example f(x) = (x7+1−(x+1)7)6(x6+1+(x+1)6)−7. Several
solvers relied on mathematical software to negotiate the technical complexities.
Stan Wagon of Macalester College used Mathematica and Lagrange Multipliers to
optimize (a7 + b7 + c7)6(a6 + b6 + c6)−7. Replacing 6 and 7 by low values of m
and m+ 1, he found that the optimal values were rational and wondered whether
this was always so.

Another approach was taken by the proposer and one other submitter. The num-
bers a, b, c are roots of the cubic

(x− a)(x− b)(x− c) = x3 − qx− r,

where q = −(ab+ bc+ ca) and r = abc. Consider the case that r 6= 0. For n ≥ 1,
let sn = an + bn + cn. Then s1 = 0, 0 < s2 = 2q, s3 = s31 + 3(qs1 + 3r)− 6r = 3r
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and sn = qsn−2 + rsn−3 for n ≥ 4. This leads to s4 = qs2 + rs1 = 2q2, s5 = 5qr,
s6 = 2q3 + 3r2 and s7 = 7q2r.

The proposer expressed the inequality in terms of s2 and s3 and an adroit use of
a weighted arithmetic-geometric means inequality led to a successful conclusion.
The other submitter did not fare so well. The given inequality was rewritten as
76q12r6 ≤ C(2q3 + 3r2)7 or

t4

(3 + 2t)7
≤ C

76
,

where t = q3/r2 > 0. For t > 0, the left side assumes its maximum value of 16/77

at t = 2, so that the minimum value of C for which the inequality is satisfied is
apparently 16/7.

But does t in fact range over all of the positive reals? Since q = 1
2 (a2 + b2 + c2) ≥

3
2 (a2b2c2)1/3, we have that

q3

r2
=

1

8
· (a2 + b2 + c2)3

a2b2c2
≥ 27

8
> 2.

The restriction that a+ b+ c = 0 will push this lower bound even higher since the
condition a = b = c for equality cannot occur. We note that (a, b, c) = (1, 1,−2)
corresponds to t = 27/4 and the value 35/2 · 117 for t4(3 + 2t)−7.

3814. Proposed by Marcel Chiriţă.

Prove that for any number x in the closed interval
î√

2
2 ,
√

2
ó
, there exists a point

M in the plane of the square ABCD such that

x =
AM +MC

BM +MD
.

Solved by A. Alt; AN-anduud Problem Solving Group; G. Apostolopoulos; D. Bai-
ley, E. Campbell, and C. Diminnie; R. Barbara; M. Bataille, P. De; O. Geupel;
J. Hawkins and D. Stone; O. Kouba; S. Malikić; C. Mortici; C. Sánchez-Rubio;
E. Swylan; D. Văcaru; and the proposer. We present 2 solutions.

Solution 1, by Prithwijit De.

Because we deal with ratios of segments, we can place the square in the Cartesian
plane so that the coordinates of A, B, C and D are (1, 0), (0, 1), (−1, 0) and
(0,−1) respectively. The coordinates of any point M in the line segment BD may
be assumed to be (0,m), for some real number m ∈ [−1, 1]. For such a point M ,
BM +MD = 2 and AM +MC = 2

√
1 +m2. Therefore

AM +MC

BM +MD
=
√

1 +m2.

Observe that as M moves along the line segment BD,
√

1 +m2 decreases contin-
uously from

√
2 to 1, then returns to

√
2, thereby covering the interval [1,

√
2]. If
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M is taken on the line segment AC then we may assume that its coordinates are
(m, 0) for some real number m ∈ [−1, 1]. For such a point M ,

AM +MC

BM +MD
=

1√
1 +m2

.

Observe that as M moves along the line segment AC, 1√
1+m2

increases continu-

ously from
√
2
2 to 1 and then returns to

√
2
2 , thereby covering the interval [

√
2
2 , 1].

Thus for any x in the interval
î√

2
2 ,
√

2
ó
, there exists a point M on a diagonal of

the square such that

x =
AM +MC

BM +MD
.

Solution 2 is a composite of similar arguments from George Apostolopoulos, Omran
Kouba and Marcel Chiriţă.

Let M be any point in the plane of the square ABCD, and consider the function

f(M) =
AM +MC

BM +MD
.

Since its denominator does not vanish, f is a continuous function. Moreover,
f(A) =

√
2/2 and f(B) =

√
2. Thus, by the intermediate value theorem we know

that for any number x in the closed interval
î√

2
2 ,
√

2
ó
, there exists a point M such

that f(M) = x, which is the desired conclusion.

But we can say more, namely, that the equation f(M) = x has a solution M in

the plane if and only if x belongs to
î√

2
2 ,
√

2
ó
. Indeed, note that for nonnegative

u and v we have

u2 + v2 ≤ (u+ v)2 ≤ 2(u2 + v2),

with equality on the left when uv = 0, and on the right when u = v. So, if a, b, c
and d are nonnegative real numbers such that a2 + b2 = c2 + d2 then

1√
2
≤ a+ b

c+ d
≤
√

2. (1)

Now, with O at the centre of the square we have
−→
OA = −

−−→
OC and

−−→
OB = −

−−→
OD,

so that for every point M ,

AM2 + CM2 = (
−−→
OM −

−→
OA)2 + (

−−→
OM +

−→
OA)2 = 2OM2 + 2OA2

BM2 +DM2 = (
−−→
OM −

−−→
OB)2 + (

−−→
OM +

−−→
OB)2 = 2OM2 + 2OB2.

That is AM2 + CM2 = BM2 + DM2. (Alternatively, note that MO is the
median of both triangles MAC and MBD whose sides opposite M have equal
lengths.) Applying (1) to a = MA, b = MB, c = MC and d = MD, we conclude

that f(M) ∈
î√

2
2 ,
√

2
ó

for every point M in the plane. Moreover, analyzing the
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cases of equality in (1), we see that f(M) =
√

2 if and only if M ∈ {B,D} and
f(M) =

√
2/2 if and only if M ∈ {A,C}.

3815. Proposed by Paolo Perfetti.

Show that xx ≤ x2 − x+ 1 for all 0 ≤ x ≤ 1.

Solved by AN-anduud Problem Solving Group; Š. Arslanagić; M. Bataille; N. Ev-
genidis; M. Dincă; O. Furdui; O. Geupel; H. Wang and J. Woydylo; O. Kouba;
K.W. Lau; A. Li; S. Malikić (2 solutions); P. McCartney; D. Smith; and the pro-
poser. There were 4 solutions via numerical methods to prove claims about some
inequalities, which (while correct) require approximating roots of non-algebraic
equations via computer assistance. We present 4 solutions, each using more pow-
erful theorems than the previous.

Foreword: We take 00 = limx→0+ x
x = elimx→0+ x ln(x) = e0 = 1, so we have

1 ≤ 12 − 1 + 1 = 1, and so the following solutions will only prove the inequality
for all x ∈ (0, 1].

Solution 1, by Omran Kouba.

Since 1− x+ x2 > 0 for x ∈ [0, 1] we may consider the function

f : (0, 1]→ R, f(x) = ln(1− x+ x2)− x lnx.

We have

f ′(x) =
2x− 1

1− x+ x2
− 1− lnx

and

f ′′(x) =
1 + 2x− 2x2

(1− x+ x2)2
− 1

x
=

1− x
x(1− x+ x2)2

g(x)

where g(x) = x3 + x2 + 2x− 1. Now, g is increasing on [0, 1] and g(0)g(1) < 0, so
there is unique x0 ∈ (0, 1) such that g(x0) = 0. Moreover, g(x) < 0 for 0 < x < x0,
g(x) > 0 for x0 < x < 1. This proves that f ′ is decreasing on (0, x0] and increasing
on [x0, 1]. From f ′(1) = 0 and limx→0+ f

′(x) = +∞ we conclude that there is a
unique x1 ∈ (0, x0) with f ′(x1) = 0 and that f ′(x) has the sign of x1 − x on
the interval (0, 1]. Therefore, f is increasing on (0, x1] and decreasing on [x1, 1].
But limx→0+ f(x) = 0, and f(1) = 0. The next table of variations illustrates this
discussion:

x 0 x1 x0 1

g(x) − 0 +

f ′(x) +∞ ↘ 0 ↘ ^ ↗ 0

f ′(x) + 0 − −

f(x) 0 ↗ _ ↘ 0

So f(x) > 0 for x ∈ (0, 1), and the proposed inequality follows.
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Solution 2, by Michel Bataille.

Equality holds when x = 1. From now on, we suppose that x ∈ (0, 1). Let
h = 1− x. Then h ∈ (0, 1) and the required inequality becomes

e(1−h) ln(1−h) ≤ 1− h+ h2

or, equivalently,

(1− h) ln(1− h) ≤ ln(1− h(1− h)) (1).

Since h(1− h) ∈ (0, 1) as well, (1) rewrites as

−(1− h)
∞∑

n=1

hn

n
≤ −

∞∑
n=1

hn(1− h)n

n

that is,
∞∑

n=1

hn

n
((1− h)− (1− h)n) ≥ 0.

But this inequality clearly holds since h > 0 and for all positive integer n,

(1− h)− (1− h)n = (1− h)(1− (1− h)n−1) ≥ 0

(recalling that 0 < 1− h < 1). The proof is complete.

Solution 3, by Salem Malikić.

Make the substitution a = 1
x , so a ≥ 1. Then the required inequality is equivalent

to Å
1

a

ã 1
a

≤ 1

a2
− 1

a
+ 1,

which, after rearranging and raising both sides to the power of a, becomes

1

a
≤
Å

1 +
1− a
a2

ãa
.

We now use Bernoulli’s inequality in the form 1 + bx ≤ (1 + x)b for x ≥ −1 and
b ≥ 1:

1

a
= 1 + a · 1− a

a2
≤
Å

1 +
1− a
a2

ãa
,

so we are done.

Solution 4, by both the AN-anduud Problem Solving Group and Nikolaos Evgenidis.

By the weighted AM-GM inequality, we have, for x ∈ (0, 1]:

x2 − x+ 1 = x · x+ (1− x) · 1 ≥ xx · 11−x = xx.
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Editor’s comments. A variation of Solution 2 involved the use of the binomial
expansion, by H. Wang and J. Woydylo. There were variations on Solution 3,
usually a different substitution before applying Bernoulli’s inequality. V. Konećny
commented that this is one part of the two-sided inequality

1

2− x
< xx < x2 − x+ 1,

for x ∈ (0, 1), which with proof via the weighted AM-GM inequality is found in
a text by Jǐŕı Herman of Masaryhova University, where Konećny studied 60 years
ago.

3816. Proposed by Mehmet Şahin.

Let ABC be a right triangle with right angle at C, and let D be the foot of the
altitude from C. Let I1 and I2 be the incentres of triangles CAD and CBD,
respectively. Let ρ and r be the inradii of triangles I1DI2 and ABC, respectively.
Prove that

ρ

r
≤ 1

2 +
√

2
.

Solved by M. Amengual Covas; AN-anduud Problem Solving Group; G. Apos-
tolopoulos; Š. Arslanagić; M. Bataille; P. De; N. Evgenidis; O. Geupel; O. Kouba;
K. W. Lau; S. Malikić; M. R. Modak; N. Stanciu and T. Zvonaru; C. Sánchez-
Rubio; E. Swylan; D. Văcaru; and the proposer. We present the solution by Omran
Kouba.

Let us denote BC, CA and AB by a, b and c respectively. Also, let r1 and r2 be
the inradii of triangles CAD and CBD, respectively.

First we note that ∠I1DI2 = 90◦ since I1D and I2D are the internal and external
bisectors of ∠ADC. From the similarity of triangles CAD and BAC we conclude
that I1D

IC = CA
AB ; analogously, from the similarity of triangles CBD and ABC we

conclude that I2D
IC = BC

AB . Thus,

I1D

I2D
=
AC

AB
.

This proves that the right triangles I1DI2 and ACB are similar and consequently

ρ

r
=
I1D

AC
=

√
2 r1
AC

.

But from the similarity of triangles CAD and BAC we see that r1
AC = r

AB . So,
we have proved that

ρ

r
=
√

2 · r
c
.
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On the other hand,

ab

a+ b+ c
=
ab(a+ b− c)
(a+ b)2 − c2

=
a+ b− c

2
≤
√

2(a2 + b2)− c
2

=
(
√

2− 1)c

2
=

c

2(
√

2 + 1)
(2)

and the desired inequality follows by combining (1) and (2).

3817. Proposed by Tiagran Hakobyan.

Let a, b ∈ N with gcd(a, b) = 1. Let p1 < p2 < p3 < . . . be the set of primes in
the progression {ak + b}∞k=0. Consider

α = 0.p1p2p3 · · · ,

where the digits of the prime numbers p1, p2, p3, . . . placed side by side form the
digits of α. Prove that α is irrational.

Solved by R. Barbara; O. Guepel; and the proposer. There was one incomplete
solution. We present 2 solutions.

Solution 1, by the proposer.

By Dirichlet’s theorem, there are infinitely many primes in the progression

{ak + b}∞k=0,

so the decimal expansion of α cannot terminate. Suppose that α is rational. Then
its decimal expansion is eventually periodic with some positive period of length
u consisting of digits not all zero. Pick a prime q = ak0 + b exceeding 5 in the
sequence; suppose that q has v digits. Then, for k ≥ k0,

ak + b = a(k − k0) + q,

so that the digits of the primes of the form an + q with n ≥ 0 constitute the tail
of the decimal expansion of α.

Since gcd(a · 10m, q) = 1, the subsequence {a · 10m · k + q} with m = 2u+ v also
has infinitely many primes, and each such prime will be responsible for a block of
at least 2u zeros in the expansion of α. Since any succession of 2u digits contains
one full period, we are led to a contradiction.

Solution 2, by Oliver Geupel.

Assume that α is eventually periodic with period length u. By omitting a suitable
finite number of initial terms in the sequence {ak + b}, we may assume that α is
actually periodic. For i ≥ 1, let ni be the number of primes in the sequence with
i decimal digits. The the sum of the reciprocals of primes pj with i digits satisfies∑{

1

pj
: 1 +

i−1∑
t=1

nt ≤ j ≤
i∑

t=1

nt

}
≤ ni

10i−1
,
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since each pj exceeds 10i−1.

Suppose that ni > u. Then there is an increasing succession of u+ 1 primes each
with i digits that give rise to (u+ 1)i = ui+ i consecutive digits of α. Because ui
is a multiple of u, the first i of these digits is equal to the last i, so that two of the
primes are equal and we get a contradiction. Thus, ni ≤ ui for all i and the sum
of the reciprocals of the primes in the sequence does not exceed

u
∞∑
i=1

(1/10i−1) = 10u/9.

But this contradicts the strong form of Dirichlet’s theorem, so the sum diverges.

Editor’s comments. Barbara observed that this result holds for any base of nu-
meration. Geupel mentioned that he was inspired by the paper B. Sung, When is
a decimal expansion irrational? Resonance (Indian Academy of Science) 9 (2004),
78-80.

3818. Proposed by José Luis Dı́az-Barrero.

Let a, b, c be positive real numbers such that abc = 1. Prove that

(
√
a+
√
b)4

a+ b
+

(
√
b+
√
c)4

b+ c
+

(
√
c+
√
a)4

c+ a
≥ 24.

Solved by AN-anduud Problem Solving Group; G. Apostopoulos; Š. Arslanagić;
M. Bataille; E. Campbell, D.T. Bailey and C. Diminnie; P. De; M. Dincă; N. Ev-
genidis; K. W. Lau; S. Malikić; P. McCartney; M. Modak; C. Mortici; P. Perfetti;
D. Smith; D. Văcaru; S. Wagon; H. Wang and J. Wojdylo; and the proposer. We
present 2 solutions.

Solution 1, provided by most of the solvers.

From the inequality (x + y)4 − 8xy(x2 + y2) = (x − y)4 ≥ 0, we deduce that the
left side of the inequality is not less than 8(

√
ab+

√
bc+

√
ca). An application of

the arithmetic-geometric means inequality yields the desired result.

Solution 2, by Nikolaos Evgenidis.

Let (x, y, z) = (
√
a,
√
b,
√
c). Applying the Cauchy-Schwarz Inequality (

∑
uivi)

2 ≤
(
∑
u2i )(

∑
v2i ) with u1 = (x + y)2/

√
x2 + y2, v1 =

√
x2 + y2, we see that the left

side of the inequality is not less than

[(x+ y)2 + (y + z)2 + (z + x)2]2

2(x2 + y2 + z2)
.
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Since xy + yz + xx ≥ 3(xyz)1/3 = 3 and

[(x+ y)2 + (y + z)2 + (z + x)2]2 = 4(x2 + y2 + z2 + xy + yz + zx)2

≥ 4(x2 + y2 + z2 + 3)2

= 4[(x2 + y2 + z2 − 3)2 + 12(x2 + y2 + z2)]

≥ 48(x2 + y2 + z2),

the desired inequality follows.

3819. Proposed by Francisco Javier Garciá Capitán.

Let ABC be a triangle with circumcentre O and incentre I. Let ` be any line that
is perpendicular to OI. Prove that for any point P on ` that is inside the triangle,
the sum of the distances from P to the sides of ABC is constant.

Solved by M. Bataille; O. Kouba; E. Swylan; T. Zvonaru and N. Stanciu; and the
proposer. We present the solution by Edmund Swylan, with details added by the
editor.

With the use of signed distances, there is no need to restrict P to the inside of the
given triangle. Specifically, we define the distance d(P, Y Z) of the point P to the
side Y Z of a triangle XY Z to be positive if and only if P and X lie in the same
half-plane defined by the line Y Z.

Here, we are given two points P and Q in the plane of an arbitrary nonequilateral
triangle ABC, so that PQ ⊥ OI, and we label the points so that a rotation of

90◦ about P takes the vector
−→
IO into a vector that points in the same direction

as
−−→
PQ. We are to prove that

Σ := (d(Q,BC)−d(P,BC))+(d(Q,CA)−d(P,CA))+(d(Q,AB)−d(P,AB)) = 0.

Define Ia and Oa to be the feet of the perpendiculars to BC from I and O, respec-
tively, and θa = ∠IaIO to be a signed angle (positive if labeled counterclockwise).
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We introduce the notation XY for the signed distance from X to Y , where we take
IO,AB,BC, and CA to define the positive direction of the lines they determine.
In this way,

IaOa = IO sin θa (1)

regardless of how the lines IO and BC are related, as depicted in the figure where
both IaOa and θa are negative on the left, and both are positive on the right.

Let P ′ be the point where the parallel to BC through P meets the perpendicular
to BC through Q. We define the sign of P ′Q so that P ′Q = d(Q,BC)−d(P,BC).

Let R be any point on the line P ′P for which the vectors
−−→
BC and

−→
PR point

in the same direction. Then because a rotation through 90◦ about P takes the

vectors
−→
IIa and

−→
IO into vectors that point in the same direction as

−→
PR and

−−→
PQ,

respectively, we have θa = ∠RPQ. Moreover, ∠RPQ has the same sign as P ′Q
regardless of how the lines IO and BC are related, as depicted in the figure where
both P ′Q and ∠RPQ are negative on the left, and both are positive on the right.
We conclude that

d(Q,BC)− d(P,BC) = P ′Q = PQ sin θa,

with analogous expressions for d(Q,CA) − d(P,CA) and d(Q,AB) − d(P,AB).
Thus, with Ib, Ob, Ic, and Oc the respective projections of I and O on the sides
CA and AB, and θb := ∠IbIO, θc := ∠IcIO, we have reduced our sum to

Σ = PQ(sin θa + sin θb + sin θc).

We now compare Σ to the expression we get by adding together the equalities
analogous to (1), namely

IaOa + IbOb + IcOc = IO(sin θa + sin θb + sin θc). (2)

Because we assume that neither IO nor PQ can be zero, Σ can vanish if and only
if the sum of the three sines is zero, which can happen if and only if the sum in
(2) is zero. But

IaOa + IbOb + IcOc = (BOa −BIa) + (COb − CIb) + (AOc −AIc)
= (BOa + COb +AOc)− (BIa + CIb +AIc).

Because each of the sums in the last line is equal to the semiperimeter of the
triangle, their difference is zero, as desired.

Editor’s comments. By coincidence, an article [2] appeared in the latest Mathe-
matics Magazine that deals with issues related to our problem, namely Viviani’s
theorem and its extension to the result,

The sum of the distances from a point inside a triangle to the three sides takes
every value from the smallest altitude of the triangle to the largest altitude.

(Viviani’s theorem deals with the equilateral triangle, where the sum of the three
distances equals the altitude.) Polster provides a simple pictorial proof, but the
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result is also an easy consequence of our solution to 3819. He refers to the article
[1], where Abboud uses linear programming to prove that any triangle can be
divided into parallel segments on which the sum is constant, but neither author
observes that these parallel segments happen to be perpendicular to OI.

References:

[1] Elias Abboud, Viviani’s theorem and its extensions, College Math. J. 41:3
(May 2010) 203-211.

[2] Burkard Polster, Viviani á la Kawasaki: Take Two, Math. Mag. 87:4 (October
2014) 280-283.

3820. Proposed by Michel Bataille.

Prove that

2x

sinh(2 tanhx)
< (coshx)2 <

2x

sinh(2 tanhx)
+ x sinh(2x)

for all nonzero real x.

Solved by R. Hess; O. Kouba; P. Perfetti; and the proposer. There was one in-
complete solution, and one solution consisting solely of a Mathematica verification.
We present Omran Kouba’s solution.

For t ∈ (0, 1) we have

1− t2

2t
ln

Å
1 + t

1− t

ã
=

(1− t2)

t
tanh−1(t) = (1−t2)

∞∑
n=0

t2n

2n+ 1
= 1−2

∞∑
n=1

t2n

4n2 − 1
< 1

and

sinh(2t)

2t
= 1 +

∞∑
n=1

22nt2n

(2n+ 1)!
> 1.

Combining the above, we conclude that for t ∈ (0, 1) we have

sinh(2t)

2t
> (1− t2)

tanh−1(t)

t

or equivalently

1

1− t2
>

2 tanh−1(t)

sinh(2t)
.

Applying this with t = tanhx, and noting that both sides of the obtained inequality
are even functions, we obtain the first inequality.
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In a similar way, for t ∈ (0, 1) we have(
1− t2 + t sinh(2t)

) tanh−1(t)

t
− sinh(2t)

2t

=

(
1 + t2 +

∞∑
n=2

22n−1t2n

(2n− 1)!

)( ∞∑
n=0

t2n

2n+ 1

)
−
∞∑

n=0

22nt2n

(2n+ 1)!

=
2

3
t2 +

∞∑
n=2

ant
2n

with

an =
4n

4n2 − 1
+

(2n2 + n− 1)22n

(2n+ 1)!
+

n−2∑
k=1

22n−2k−1

(2k + 1)(2n− 2k − 1)!
> 0

This proves that for t ∈ (0, 1) we have
(
1− t2 + t sinh(2t)

) tanh−1(t)

t
>

sinh(2t)

2t
.

Multiplying both sides by the positive quantity
2t

(1− t2) sinh(2t)
, we obtainÅ

2

sinh(2t)
+

2t

1− t2

ã
tanh−1(t) >

1

1− t2
.

Applying this, with t = tanhx, and noting that both sides of the obtained inequal-
ity are even functions, the second inequality follows.

Editor’s comments. The featured solution utilises a substitution to simplify the
problem, and then uses power series to verify each side of the inequality, thanks
to how related the individual series are. Interestingly, the left-hand inequality is
provable without passing to the useful but tedious power series. S. Malikić utilised

the inequality sinh(t)
t > 1 for all t 6= 0, as follows:

2x

sinh(2 tanh(x))
=

2 tanh(x)

sinh(2 tanh(x))

x

tanh(x)

<
x

tanh(x)

=
x

sinh(x)
cosh(x) < cosh(x) < cosh(x)2.

The proposer, M. Bataille, took an even more elementary approach, by computing
that the derivative of f(x) = cosh2(x) sinh(2 tanh(x))− 2x is positive for positive
x, and that f(0) = 0, therefore proving the left-hand inequality. The right-hand
inequality has seen no such simple proof, although the proposer found a simpler
inequality which implies the right-hand inequality, which yields a less troublesome
series computation.
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Nermin Hodžić, Dobošnica, Bosnia and Herzegovina and Salem Malikić, Simon Fraser
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