

Draft Solutions for 2016 CMO - April 27, 2016

- 1. The integers 1, 2, 3, ..., 2016 are written on a board. You can choose any two numbers on the board and replace them with their average. For example, you can replace 1 and 2 with 1.5, or you can replace 1 and 3 with a second copy of 2. After 2015 replacements of this kind, the board will have only one number left on it.
 - (a) Prove that there is a sequence of replacements that will make the final number equal to 2.
 - (b) Prove that there is a sequence of replacements that will make the final number equal to 1000.

Solution: (a) First replace 2014 and 2016 with 2015, and then replace the two copies of 2015 with a single copy. This leaves us with $\{1, 2, \ldots, 2013, 2015\}$. From here, we can replace 2013 and 2015 with 2014 to get $\{1, 2, \ldots, 2012, 2014\}$. We can then replace 2012 and 2014 with 2013, and so on, until we eventually get to $\{1, 3\}$. We finish by replacing 1 and 3 with 2.

(b) Using the same construction as in (a), we can find a sequence of replacements that reduces $\{a, a+1, \ldots, b\}$ to just $\{a+1\}$. Similarly, can also find a sequence of replacements that reduces $\{a, a+1, \ldots, b\}$ to just $\{b-1\}$.

In particular, we can find sequences of replacements that reduce $\{1, 2, \ldots, 999\}$ to just $\{998\}$, and that reduce $\{1001, 1002, \ldots, 2016\}$ to just $\{1002\}$. This leaves us with $\{998, 1000, 1002\}$. We can replace 998 and 1002 with a second copy of 1000, and then replace the two copies of 1000 with a single copy to complete the construction.

2. Consider the following system of 10 equations in 10 real variables v_1, \ldots, v_{10} :

$$v_i = 1 + \frac{6 v_i^2}{v_1^2 + v_2^2 + \dots + v_{10}^2}$$
 $(i = 1, \dots, 10).$

Find all 10-tuples $(v_1, v_2, \dots, v_{10})$ that are solutions of this system.

Solution:

For a particular solution $(v_1, v_2, \dots, v_{10})$, let $s = v_1^2 + v_2^2 + \dots + v_{10}^2$. Then

$$v_i = 1 + \frac{6v_i^2}{s} \implies 6v_i^2 - sv_i + s = 0.$$

Let a and b be the roots of the quadratic $6x^2 - sx + s = 0$, so for each i, $v_i = a$ or $v_i = b$. We also have ab = s/6 (by Vieta's formula, for example).

If all the v_i are equal, then

$$v_i = 1 + \frac{6}{10} = \frac{8}{5}$$

for all i. Otherwise, let 5 + k of the v_i be a, and let 5 - k of the v_i be b, where $0 < k \le 4$. Then by the AM-GM inequality,

$$6ab = s = (5+k)a^2 + (5-k)b^2 \ge 2ab\sqrt{25-k^2}.$$

From the given equations, $v_i \geq 1$ for all i, so a and b are positive. Then $\sqrt{25-k^2} \leq 3 \Rightarrow 25-k^2 \leq 9 \Rightarrow k^2 \geq 16 \Rightarrow k=4$. Hence, $6ab=9a^2+b^2\Rightarrow (b-3a)^2=0 \Rightarrow b=3a$.

Adding all given ten equations, we get

$$v_1 + v_2 + \cdots + v_{10} = 16.$$

But $v_1 + v_2 + \cdots + v_{10} = 9a + b = 12a$, so a = 16/12 = 4/3 and b = 4. Therefore, the solutions are $(8/5, 8/5, \dots, 8/5)$ and all ten permutations of $(4/3, 4/3, \dots, 4/3, 4)$.

3. Find all polynomials P(x) with integer coefficients such that P(P(n) + n) is a prime number for infinitely many integers n.

Answer: P(n) = p where p is a prime number and P(n) = -2n + b where b is odd.

Solution: Note that if P(n) = 0 then P(P(n) + n) = P(n) = 0 which is not prime. Let P(x) be a degree k polynomial of the form $P(x) = a_k x^k + a_{k-1} x^{k-1} + \cdots + a_0$ and note that if $P(n) \neq 0$ then

$$P(P(n) + n) - P(n) = a_k[(P(n) + n)^k - n^k] + a_{k-1}[(P(n) + n)^{k-1} - n^{k-1}] + \dots + a_1P(n)$$

which is divisible by (P(n)+n)-n=P(n). Therefore if P(P(n)+n) is prime then either $P(n)=\pm 1$ or $P(P(n)+n)=\pm P(n)=p$ for some prime number p. Since P(x) is a polynomial, it follows that $P(n)=\pm 1$ for only finitely many integers n. Therefore either P(n)=P(P(n)+n) for infinitely many integers n or P(n)=-P(P(n)+n) for infinitely many integers n. Suppose that P(n)=P(P(n)+n) for infinitely many integers n. This implies that the polynomial P(P(x)+x)-P(x) has infinitely many roots and thus is identically zero. Therefore P(P(x)+x)=P(x) holds identically. Now note that if $k\geq 2$ then P(P(x)+x) has degree k^2 while P(x) has degree k, which is not possible. Therefore P(x) is at most linear with P(x)=ax+b for some integers a and b. Now note that

$$P(P(x) + x) = a(a+1)x + ab + b$$

and thus a=a(a+1) and ab+b=b. It follows that a=0 which leads to the solution P(n)=p where p is a prime number. By the same argument if P(n)=-P(P(n)+n) for infinitely many integers n then P(x)=-P(P(x)+x) holds identically and P(x) is linear with P(x)=ax+b. In this case it follows that a=-a(a+1) and ab+b=-b. This implies that either a=0 or a=-2. If a=-2 then P(n)=-2n+b which is prime for some integers n only if b is odd. Note that in this case P(P(n)+n)=2n-b which is indeed prime for infinitely many integers n as long as b is odd.

- 4. Lavaman versus the Flea. Let A, B, and F be positive integers, and assume A < B < 2A. A flea is at the number 0 on the number line. The flea can move by jumping to the right by A or by B. Before the flea starts jumping, Lavaman chooses finitely many intervals $\{m+1, m+2, \ldots, m+A\}$ consisting of A consecutive positive integers, and places lava at all of the integers in the intervals. The intervals must be chosen so that:
 - (i) any two distinct intervals are disjoint and not adjacent;
 - (ii) there are at least F positive integers with no lava between any two intervals; and
 - (iii) no lava is placed at any integer less than F.

Prove that the smallest F for which the flea can jump over all the intervals and avoid all the lava, regardless of what Lavaman does,

is F = (n-1)A + B, where n is the positive integer such that $\frac{A}{n+1} \le B - A < \frac{A}{n}$.

Solution: Let B = A + C where $A/(n+1) \le C < A/n$.

First, here is an informal sketch of the proof.

Lavaman's strategy: Use only safe intervals with nA + C - 1 integers. The flea will start at position [1, C] from the left, which puts him at position [nA, nA + C - 1] from the right. After n - 1 jumps, he will still have nA - (n-1)(A+C) = A - (n-1)C > C distance to go, which is not enough for a big jump to clear the lava. Thus, he must do at least n jumps in the safe interval, but that's possible only with all small jumps, and furthermore is impossible if the starting position is C. This gives him starting position 1 higher in the next safe interval, so sooner or later the flea is going to hit the lava.

Flea's strategy: The flea just does one interval at a time. If the safe interval has at least nA+C integers in it, the flea has distance d>nA to go to the next lava when it starts. Repeatedly do big jumps until d is between 1 and $C \mod A$, then small jumps until the remaining distance is between 1 and C, then a final big jump. This works as long as the first part does. However, we get at least n big jumps since floor((d-1)/A) can never go down two from a big jump (or we'd be done doing big jumps), so we get n big jumps, and thus we are good if $d \mod A$ is in any of [1, C], [C+1, 2C], ... [nC+1, (n+1)C], but that's everything.

Let C=B-A. We shall write our intervals of lava in the form $(L_i,R_i]=\{L_i+1,L_i+2,\ldots,R_i\}$, where $R_i=L_i+A$ and $R_{i-1}< L_i$ for every $i\geq 1$. We also let $R_0=0$. We shall also represent a path for the flea as a sequence of integers x_0,x_1,x_2,\ldots where $x_0=0$ and $x_j-x_{j-1}\in\{A,B\}$ for every $j\geq 0$.

Now here is a detailed proof.

First, assume F < (n-1)A + B (= nA + C): we must prove that Lavaman has a winning strategy. Let $L_i = R_{i-1} + nA + C - 1$ for every $i \ge 1$. (Observe that $nA + C - 1 \ge F$.)

Assume that the flea has an infinite path that avoids all the lava, which

means that $x_i \notin (L_i, R_i]$ for all $i, j \geq 1$. For each $i \geq 1$, let

$$egin{array}{lll} M_i &=& \max\{x_j: x_j \leq L_i\} \,, & m_i &=& \min\{x_j: \, x_j > R_i\} \,, \\ & & \mathrm{and} & J(i) &=& \max\{j: \, x_j \leq L_i \,\} \,. \end{array}$$

Also let $m_0 = 0$. Then for $i \ge 1$ we have

$$M_i = x_{J(i)}$$
 and $m_i = x_{J(i)+1}$.

Also, for every $i \geq 1$, we have

- (a) $m_i = M_i + B$ (because $M_i + A \leq L_i + A = R_i$);
- (b) $L_i \ge M_i > L_i C$ (since $M_i = m_i B > R_i B = L_i + A B$); and

(c)
$$R_i < m_i \le R_i + C$$
 (since $m_i = M_i + B \le L_i + B = R_i + C$).

<u>Claim 1</u>: J(i+1) = J(i) + n + 1 for every $i \ge 1$. (That is, after jumping over one interval of lava, the flea must make exactly n jumps before jumping over the next interval of lava.)

Proof:

$$x_{J(i)+n+1} \leq x_{J(i)+1} + Bn$$

$$= m_i + Bn$$

$$< R_i + C + \left(A + \frac{A}{n}\right)n$$

$$= L_{i+1} + A + 1.$$

Because of the strict inequality, we have $x_{J(i)+n+1} \leq R_{i+1}$, and hence $x_{J(i)+n+1} \leq L_{i+1}$. Therefore $J(i)+n+1 \leq J(i+1)$. Next, we have

$$x_{J(i)+n+1} \ge x_{J(i)+1} + An$$

= $m_i + An$
> $R_i + An$
= $L_{i+1} - C + 1$
> $L_{i+1} - A + 1$ (since $C < A$).

Therefore $x_{J(i)+n+2} \ge x_{J(i)+n+1} + A > L_{i+1}$, and hence J(i+1) < J(i) + n + 2. Claim 1 follows.

Claim 2: $x_{j+1} - x_j = A$ for all j = J(i) + 1, ..., J(i+1) - 1, for all $i \ge 1$. (That is, the *n* intermediate jumps of Claim 1 must all be of

length A.)

Proof: If Claim 2 is false, then

$$M_{i+1} = x_{J(i+1)} = x_{J(i)+n+1} \ge x_{J(i)+1} + (n-1)A + B$$

> $R_i + nA + C$
= $L_{i+1} + 1$
> M_{i+1}

which is a contradiction. This proves Claim 2.

We can now conclude that

$$x_{J(i+1)+1} = x_{J(i)+n+2} = x_{J(i)+1} + nA + B;$$

i.e., $m_{i+1} = m_i + nA + B$ for each $i \ge 1$.

Therefore

$$m_{i+1} - R_{i+1} = m_i + nA + B - (R_i + nA + C - 1 + A)$$

= $m_i - R_i + 1$.

Hence

$$C \geq m_{C+1} - R_{C+1} = m_1 - R_1 + C > C$$

which is a contradiction. Therefore no path for the flea avoids all the lava. We observe that Lavaman only needs to put lava on the first C+1 intervals.

Now assume $F \ge (n-1)A + B$. We will show that the flea can avoid all the lava. We shall need the following result:

Claim 3: Let $d \ge nA$. Then there exist nonnegative integers s and t such that $sA + tB \in (d - C, d]$.

We shall prove this result at the end.

First, observe that $L_1 \geq nA$. By Claim 3, it is possible for the flea to make a sequence of jumps starting from 0 and ending at a point of $(L_1 - C, L_1]$. From any point of this interval, a single jump of size B takes the flea over $(L_1, R_1]$ to a point in $(R_1, R_1 + C]$, which corresponds to the point $x_{J(1)+1}$ $(= m_1)$ on the flea's path.

Now we use induction to prove that, for every $i \ge 1$, there is a path such that x_j avoids lava for all $j \le J(i) + 1$. The case i = 1 is done, so

assume that the assertion holds for a given i. Then $x_{J(i)+1} = m_i \in (R_i, R_i + C]$. Therefore

$$L_{i+1} - m_i \geq R_i + F - (R_i + C) = F - C \geq nA$$
.

Applying Claim 3 with $d = L_{i+1} - m_i$ shows that the flea can jump from m_i to a point of $(L_{i+1} - C, L_{i+1}]$. A single jump of size B then takes the flea to a point of $(R_{i+1}, R_{i+1} + C]$ (without visiting $(L_{i+1}, R_{i+1}]$), and this point serves as $x_{J(i+1)+1}$. This completes the induction.

Proof of Claim 3: Let u be the greatest integer that is less than or equal to d/A. Then $u \ge n$ and $uA \le d < (u+1)A$. For $v = 0, \ldots, n$, let

$$z_v = (u - v)A + vB = uA + vC.$$

Then

$$\begin{array}{lll} z_0 &=& uA \leq d, \\ z_n &=& uA + nC = uA + (n+1)C - C \geq (u+1)A - C > d - C\,. \\ \text{and} \ z_{v+1} - z_v &=& C \quad \text{ for } v = 0, \ldots, n-1. \end{array}$$

Therefore we must have $z_v \in (d-C,d]$ for some v in $\{0,1,\ldots,n\}$. \square

5. Let ΔABC be an acute-angled triangle with altitudes AD and BE meeting at H. Let M be the midpoint of segment AB, and suppose that the circumcircles of ΔDEM and ΔABH meet at points P and Q with P on the same side of CH as A. Prove that the lines ED, PH, and MQ all pass through a single point on the circumcircle of ΔABC.

Solution:

Let R denote the intersection of lines ED and PH. Since quadrilaterals ECDH and APHB are cyclic, we have $\angle RDA = 180^{\circ} - \angle EDA = 180^{\circ} - \angle EDH = 180^{\circ} - \angle ECH = 90^{\circ} + A$, and $\angle RPA = \angle HPA = 180^{\circ} - \angle HBA = 90^{\circ} + A$. Therefore, APDR is cyclic. This in turn implies that $\angle PBE = \angle PBH = \angle PAH = \angle PAD = \angle PRD = \angle PRE$, and so PBRE is also cyclic.

Let F denote the base of the altitude from C to AB. Then D, E, F, and M all lie on the 9-point circle of $\triangle ABC$, and so are cyclic. We also know APDR, PBRE, BCEF, and ACDF are cyclic, which implies $\angle ARB = \angle PRB - \angle PRA = \angle PEB - \angle PDA = \angle PEF + \angle FEB - \angle PDF + \angle ADF = \angle FEB + \angle ADF = \angle FCB + \angle ACF = C$. Therefore, R lies on the circumcircle of $\triangle ABC$.

Now let Q' and R' denote the intersections of line MQ with the circumcircle of $\triangle ABC$, chosen so that Q', M, Q, R' lie on the line in that order. We will show that R' = R, which will complete the proof. However, first note that the circumcircle of $\triangle ABC$ has radius $\frac{AB}{2\sin C}$, and the circumcircle of $\triangle ABH$ has radius $\frac{AB}{2\sin \angle AHB} = \frac{AB}{2\sin(180^{\circ}-C)}$. Thus the two circles have equal radius, and so they must be symmetrical about the point M. In particular, MQ = MQ'.

Since $\angle AEB = \angle ADB = 90^{\circ}$, we furthermore know that M is the circumcenter of both $\triangle AEB$ and $\triangle ADB$. Thus, MA = ME = MD = MB. By Power of a Point, we then have $MQ \cdot MR' = MQ' \cdot MR' = MA \cdot MB = MD^2$. In particular, this means that the circumcircle of

 $\triangle DR'Q$ is tangent to MD at D, which means $\angle MR'D = \angle MDQ$. Similarly $MQ \cdot MR' = ME^2$, and so $\angle MR'E = \angle MEQ = \angle MDQ = \angle MR'D$. Therefore, R' also lies on the line ED.

Finally, the same argument shows that MP also intersects the circumcircle of $\triangle ABC$ at a point R'' on line ED. Thus, R,R', and R'' are all chosen from the intersection of the circumcircle of $\triangle ABC$ and the line ED. In particular, two of R,R', and R'' must be equal. However, $R'' \neq R$ since MP and PH already intersect at P, and $R'' \neq R'$ since MP and MQ already intersect at M. Thus, R' = R, and the proof is complete.