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Draft Solutions for 2016 CMO — April 27, 2016

1. The integers 1,2,3,...,2016 are written on a board. You can choose
any two numbers on the board and replace them with their average.
For example, you can replace 1 and 2 with 1.5, or you can replace 1
and 3 with a second copy of 2. After 2015 replacements of this kind,
the board will have only one number left on it.

(a) Prove that there is a sequence of replacements that will make the
final number equal to 2.

(b) Prove that there is a sequence of replacements that will make the
final number equal to 1000.

Solution: (a) First replace 2014 and 2016 with 2015, and then re-
place the two copies of 2015 with a single copy. This leaves us with
{1,2,...,2013,2015}. From here, we can replace 2013 and 2015 with
2014 to get {1,2,...,2012,2014}. We can then replace 2012 and 2014
with 2013, and so on, until we eventually get to {1,3}. We finish by
replacing 1 and 3 with 2.

(b) Using the same construction as in (a), we can find a sequence of
replacements that reduces {a,a + 1,...,b} to just {a + 1}. Similarly,

can also find a sequence of replacements that reduces {a,a +1,...,b}

to just {b— 1}.

In particular, we can find sequences of replacements that reduce {1,2,...,999}
to just {998}, and that reduce {1001,1002,...,2016} to just {1002}.

This leaves us with {998,1000,1002}. We can replace 998 and 1002

with a second copy of 1000, and then replace the two copies of 1000

with a single copy to complete the construction.

2. Consider the following system of 10 equations in 10 real variables

V1,...,V10:
6 v2
T e — (i=1,...,10).
'Ul +U2++U10
Find all 10-tuples (v1,v9,...,v10) that are solutions of this system.
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Solution:
For a particular solution (v1,ve,...,v10), let s = v¥ +v3 + -+ + v%,.

Then
2

0v?
vi:1+i = 6v7 —sv;+s=0.
s

Let a and b be the roots of the quadratic 622 — sz + s = 0, so for each
i, v; = a or v; = b. We also have ab = s/6 (by Vieta’s formula, for
example).

If all the v; are equal, then

v~-1—|—£—§
v 10 5

for all <. Otherwise, let 5+ k of the v; be a, and let 5 — k of the v; be
b, where 0 < k < 4. Then by the AM-GM inequality,

6ab = s = (5+ k)a? + (5 — k)b* > 2aby/25 — k2.

From the given equations, v; > 1 for all 4, so a and b are positive.
Then V25— k2 < 3 = 25—k <9 = k? > 16 = k = 4. Hence,
6ab = 9a% +b? = (b — 3a)? =0 = b= 3a.

Adding all given ten equations, we get
v +vo + --- +v19 = 16.

But v1 +va+ -+ v190 = 9a + b = 12a, so a = 16/12 = 4/3 and
b = 4. Therefore, the solutions are (8/5,8/5,...,8/5) and all ten
permutations of (4/3,4/3,...,4/3,4).

3. Find all polynomials P(z) with integer coefficients such that P(P(n)+
n) is a prime number for infinitely many integers n.

Answer: P(n) = p where p is a prime number and P(n) = —2n + b
where b is odd.
Solution: Note that if P(n) = 0 then P(P(n) +n) = P(n) = 0
which is not prime. Let P(z) be a degree k polynomial of the form
P(z) = agz® + ap_12" 1 + .-+ + ap and note that if P(n) # 0 then
P(P(n)+mn)—P(n) =

a[(P(n) + n)* —n*] + apa[(P(n) +n)* 1 =01+ 4 a1 P(n)
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which is divisible by (P(n)+mn)—n = P(n). Therefore if P(P(n)+n)
is prime then either P(n) = +1 or P(P(n)+n) = £P(n) = p for some
prime number p. Since P(z) is a polynomial, it follows that P(n) = +1
for only finitely many integers n. Therefore either P(n) = P(P(n)+n)
for infinitely many integers n or P(n) = —P(P(n) + n) for infinitely
many integers n. Suppose that P(n) = P(P(n)+n) for infinitely many
integers n. This implies that the polynomial P(P(z) + z) — P(x) has
infinitely many roots and thus is identically zero. Therefore P(P(z)+
x) = P(z) holds identically. Now note that if & > 2 then P(P(x) + x)
has degree k? while P(z) has degree k, which is not possible. Therefore
P(z) is at most linear with P(z) = az + b for some integers a and b.
Now note that

P(P(z)+z)=a(la+ 1)z +ab+b

and thus a = a(a + 1) and ab+ b = b. It follows that a = 0 which
leads to the solution P(n) = p where p is a prime number. By the
same argument if P(n) = —P(P(n) + n) for infinitely many integers
n then P(z) = —P(P(z) + z) holds identically and P(z) is linear
with P(z) = az + b. In this case it follows that a = —a(a + 1) and
ab+ b= —b. This implies that either a = 0 or a = —2. If a = —2 then
P(n) = —2n + b which is prime for some integers n only if b is odd.
Note that in this case P(P(n)+n) = 2n — b which is indeed prime for
infinitely many integers n as long as b is odd. 0

4. Lavaman versus the Flea. Let A, B, and F be positive integers, and
assume A < B < 2A. A flea is at the number 0 on the number line.
The flea can move by jumping to the right by A or by B. Before
the flea starts jumping, Lavaman chooses finitely many intervals {m +
1,m+2,...,m+ A} consisting of A consecutive positive integers, and
places lava at all of the integers in the intervals. The intervals must
be chosen so that:

(i) any two distinct intervals are disjoint and not adjacent;

(i) there are at least F' positive integers with no lava between any two
intervals; and

(7i7) no lava is placed at any integer less than F.

Prove that the smallest F' for which the flea can jump over all the
intervals and avoid all the lava, regardless of what Lavaman does,
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is F = (n— 1)A + B, where n is the positive integer such that

<p-a<?
n—+1 n

Solution: Let B= A+ C where A/(n+1) < C < A/n.

First, here is an informal sketch of the proof.

Lavaman’s strategy: Use only safe intervals with nA + C' — 1 integers.
The flea will start at position [1,C] from the left, which puts him at
position [nA4,nA + C — 1] from the right. After n — 1 jumps, he will
still have nA — (n —1)(A+ C) = A— (n —1)C > C distance to go,
which is not enough for a big jump to clear the lava. Thus, he must do
at least n jumps in the safe interval, but that’s possible only with all
small jumps, and furthermore is impossible if the starting position is
C. This gives him starting position 1 higher in the next safe interval,
so sooner or later the flea is going to hit the lava.

Flea’s strategy: The flea just does one interval at a time. If the safe
interval has at least nA+ C integers in it, the flea has distance d > nA
to go to the next lava when it starts. Repeatedly do big jumps until
d is between 1 and C mod A, then small jumps until the remaining
distance is between 1 and C, then a final big jump. This works as
long as the first part does. However, we get at least n big jumps since
floor((d — 1)/A) can never go down two from a big jump (or we’d be
done doing big jumps), so we get n big jumps, and thus we are good
if dmod A is in any of [1,C], [C + 1,2C], ...[nC + 1,(n + 1)C], but
that’s everything. O
Let C = B — A. We shall write our intervals of lava in the form
(Li,R;] = {L; +1,L; +2,...,R;}, where R, =L; + Aand R;_1 < L;
for every ¢ > 1. We also let Ry = 0. We shall also represent a path
for the flea as a sequence of integers zg, 1, Zo,... where g = 0 and
zj —zj—1 € {A, B} for every j > 0.

Now here is a detailed proof.

First, assume F' < (n — 1)A+ B (= nA + C): we must prove that
Lavaman has a winning strategy. Let L; = R;_1 +nA+ C — 1 for
every i > 1. (Observe that nA+C —1> F.)

Assume that the flea has an infinite path that avoids all the lava, which
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means that z; ¢ (L;, R;] for all 4,5 > 1. For each i > 1, let

M; = max{z;:z; <L;}, m; = min{z;: z; > R;},
and J(i) = max{j: z; < L;}.

Also let mg = 0. Then for i > 1 we have
MZ' = .’L‘J(Z) and m; = mJ(i)+1 .

Also, for every ¢ > 1, we have

(a) m; = M; + B (because M; + A < L; + A = R;);

(b) L, > M; > L;—C (since M; =m;—B > R,—B = LZ'-I-A—B);
and

(c) R < mj < Ri+C (sincem; = M;+B < L+ B = R;+C).
Claim 1: J(z+1) = J(i) + n+ 1 for every ¢ > 1. (That is, after
jumping over one interval of lava, the flea must make exactly n jumps

before jumping over the next interval of lava.)
Proof:

Ty ntl < Tye)41+ Bn
= m; + Bn

A
< Ri+C+ (A+%>n
== LZ+1+A+1

Because of the strict inequality, we have z 7(;)4 51 < Rit1, and hence
Ty 4n+1 < Lip1. Therefore J(i) +n+ 1 < J(i + 1). Next, we have

Ti)4nt1l = TiE41+An
= m; + An
> R; + An
= Lis1—C+1
> Liz1—A+4+1 (since C < A).

Therefore T 7(i\4nt2 > Tji)4nt1 + A > Liy1, and hence J(i +1) <
J(i) + n + 2. Claim 1 follows.

Claim 2: zj1; —z; = Aforall j =J(i)+1,...,J(i+1) -1, for all
i > 1. (That is, the n intermediate jumps of Claim 1 must all be of

© Canadian Mathematical Society 2016



Draft Solutions - 2016 CMO

Sun
Life Financial

length A.)
Proof: If Claim 2 is false, then

Mit1 = 25641) = Ti@)tn+1 = Tyj@41+(n—1)A+ B
> Ri+nA+C

= Li+1+1
> M

which is a contradiction. This proves Claim 2.

We can now conclude that

Tj41)+1 = Ti()y4nt2 = Ty@y+1 +nA+ B;
ie., mjy; = m;+nA+B foreachi > 1.

Therefore

miy1 — Riy1 = mi+nA+B — (Ri+nA+C -1+ A)
=m; —R; +1.

Hence
C > mey1—Roy1 = mi—Ri+C > C

which is a contradiction. Therefore no path for the flea avoids all the
lava. We observe that Lavaman only needs to put lava on the first
C + 1 intervals.

Now assume F' > (n — 1)A + B. We will show that the flea can avoid
all the lava. We shall need the following result:

Claim 3: Let d > nA. Then there exist nonnegative integers s and ¢
such that sA+¢B € (d— C,d).

We shall prove this result at the end.

First, observe that L; > nA. By Claim 3, it is possible for the flea
to make a sequence of jumps starting from 0 and ending at a point of
(L1 — C, L1]. From any point of this interval, a single jump of size B
takes the flea over (L1, R} to a point in (R, Ry +C], which corresponds
to the point z ;1)1 (= m1) on the flea’s path.

Now we use induction to prove that, for every ¢ > 1, there is a path
such that z; avoids lava for all j < J(i) + 1. The case ¢ = 1 is done, so
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assume that the assertion holds for a given 7. Then z;;41 = m; €
(R;, R; + C]. Therefore

Liy1—m; > R+ F—(R;+C) = F-C > nA.

Applying Claim 3 with d = L; 1 —m,; shows that the flea can jump from
m; to a point of (L;11 — C, Lj+1]. A single jump of size B then takes
the flea to a point of (R;11, Ri+1 + C] (without visiting (L;y1, Ri11]),
and this point serves as x (;;1)41. This completes the induction.

Proof of Claim 3: Let u be the greatest integer that is less than or
equal to d/A. Then v > n and uA < d < (u+ 1)A. For v =0,...,n,
let

zp = (u—v)A+vB = uA+vC.

Then

20 = uA < d,
zn = uA+nC = uA+(n+1)C—-C > (u+1)A-C > d-C.

and zy41 — 2, = C forv=0,...,n—1.

Therefore we must have z, € (d — C,d] for some v in {0,1,...,n}. O

5. Let AABC be an acute-angled triangle with altitudes AD and BE
meeting at H. Let M be the midpoint of segment AB, and suppose
that the circumcircles of ADEM and AABH meet at points P and
@ with P on the same side of CH as A. Prove that the lines ED,
PH, and M@ all pass through a single point on the circumcircle of
NABC.

Solution:
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Let R denote the intersection of lines £D and PH. Since quadrilater-
als FCDH and APHB are cyclic, we have ZRDA = 180°— ZEDA =
180° — ZEDH = 180° — LZECH = 90° + A, and ZRPA = /ZHPA =
180°—£ZHBA = 90°+ A. Therefore, APDR is cyclic. This in turn im-
plies that /PBE = /PBH = /PAH = /PAD = /PRD = /PRE,
and so PBRE is also cyclic.

Let F denote the base of the altitude from C to AB. Then D, E, F,
and M all lie on the 9-point circle of AABC, and so are cyclic. We also
know APDR, PBRE, BCEF, and ACDF are cyclic, which implies
/ARB = /PRB — /PRA=/PEB - /PDA = /PEF + /FEB —
/PDF+ /ADF = /FEB+ LADF = /FCB+ £LACF = C. There-
fore, R lies on the circumcircle of AABC.

Now let Q' and R’ denote the intersections of line M @Q with the cir-
cumcircle of AABC, chosen so that @', M, @, R’ lie on the line in that
order. We will show that R’ = R, which will complete the proof. How-

ever, first note that the circumcircle of AABC has radius QQfC, and
the circumcircle of AABH has radius 2sin121 B = 23in(i48]g°—0)' Thus

the two circles have equal radius, and so they must be symmetrical
about the point M. In particular, MQ = MQ'.

Since ZAEB = ZADB = 90°, we furthermore know that M is the cir-
cumcenter of both AAEB and AADB. Thus, MA=MFE =MD =
M B. By Power of a Point, we then have MQ - MR' = MQ'- MR' =
MA-MB = MD?. In particular, this means that the circumcircle of
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ADR'Q is tangent to M D at D, which means /ZMR'D = Z/MDQ.
Similarly MQ- MR' = ME?, and so ZMR'E = /ZMEQ = ZMDQ =
ZMR'D. Therefore, R' also lies on the line ED.

Finally, the same argument shows that M P also intersects the circum-
circle of AABC at a point R” on line ED. Thus, R, R, and R" are
all chosen from the intersection of the circumcircle of AABC and the
line ED. In particular, two of R, R', and R"” must be equal. However,
R" # R since MP and PH already intersect at P, and R" # R’ since
MP and MQ already intersect at M. Thus, R’ = R, and the proof is
complete. O
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