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Problems and Solutions

1. Let a1, a2, . . . , an be positive real numbers whose product is 1. Show that the sum

a1

1 + a1

+
a2

(1 + a1)(1 + a2)
+

a3

(1 + a1)(1 + a2)(1 + a3)
+· · ·+ an

(1 + a1)(1 + a2) · · · (1 + an)

is greater than or equal to
2n − 1

2n
.

Solution. Note for that every positive integer m,

am

(1 + a1)(1 + a2) · · · (1 + am)
=

1 + am

(1 + a1)(1 + a2) · · · (1 + am)
− 1

(1 + a1)(1 + a2) · · · (1 + am)

=
1

(1 + a1) · · · (1 + am−1)
− 1

(1 + a1) · · · (1 + am)
.

Therefore, if we let bj = (1+ a1)(1+ a2) · · · (1+ aj), with b0 = 0, then by telescoping
sums,

n∑
j=1

aj

(1 + a1) · · · (1 + aj)
=

n∑
j=1

(
1

bj−1

− 1

bj

)
= 1− 1

bn

.

Note that bn = (1 + a1)(1 + a2) · · · (1 + an) ≥ (2
√

a1)(2
√

a2) · · · (2√an) = 2n, with
equality if and only if all ai’s equal to 1. Therefore,

1− 1

bn

≥ 1− 1

2n
=

2n − 1

2n
.

To check that this minimum can be obtained, substituting all ai = 1 to yield

1

2
+

1

22
+

1

23
+ . . . +

1

2n
=

2n−1 + 2n−2 + . . . + 1

2n
=

2n − 1

2n
,

as desired.



2. Let m and n be odd positive integers. Each square of an m by n board is coloured
red or blue. A row is said to be red-dominated if there are more red squares than
blue squares in the row. A column is said to be blue-dominated if there are more
blue squares than red squares in the column. Determine the maximum possible value
of the number of red-dominated rows plus the number of blue-dominated columns.
Express your answer in terms of m and n.

Solution. The answer is m+n−2 if m,n ≥ 3 and max{m,n} if one of m,n is equal
to 1.

Note that it is not possible that all rows are red-dominated and all columns are
blue-dominated. This is true, since the number of rows and columns are both odd,
the number of squares is odd. Hence, there are more squares of one color than the
other. Without loss of generality, suppose there are more red squares than blue
squares. Then it is not possible that for every column, there are more blue squares
than red squares. Hence, every column cannot be blue-dominated.

If one of m,n is equal to 1, say m without loss of generality, then by the claim, the
answer is less than n + 1. The example where there are n blue-dominated columns
is by painting every square blue. There are 0 red-dominated rows. The sum of the
two is n = max{m,n}.

Now we handle the case m,n ≥ 3.

There are m rows and n columns on the board. Hence, the answer is at most
m + n. We have already shown that the answer cannot be m + n.

Since m,n are odd, let m = 2a − 1 and n = 2b − 1 for some positive integers
a, b. Since m,n ≥ 3, a, b ≥ 2. We first show that the answer is not m + n − 1. By
symmetry, it suffices to show that we cannot have all rows red-dominated and all-but-
one column blue-dominated. If all rows are red dominated, then each row has at least
b red squares. Hence, there are at least bm = (2a−1)b red squares. Since all-but-one
column is blue-dominated, there are at least 2b − 2 blue-dominated columns. Each
such column then has at least a blue squares. Therefore, there are at least a(2b− 2)
blue squares. Therefore, the board has at least (2a− 1)b + a(2b− 2) = 4ab− b− 2a
squares. But the total number of squares on the board is

(2a− 1)(2b− 1) = 4ab− 2a− 2b + 1 = 4ab− 2a− b− b + 1 < 4ab− 2a− b,

which is true since b ≥ 2. This is a contradiction. Therefore, the answer is less than
m + n− 1.



We now claim that there is a colouring of the board such that the number of blue-
dominated columns plus the number of red-dominated rows is m+n− 2; Colour the
first column entirely red, and the first row, minus the top-left corner, entirely blue.
The remaining uncoloured square is an even-by-even board. Colour the remaining
board in an alternating pattern (i.e. checkerboard pattern). Hence, on this even-
by-even board, each row has the same number of red squares as blue squares and
each column has the same number of red squares as blue squares. Then on the
whole board, since the top row, minus the top-left square is blue, all columns, but
the leftmost column, are blue-dominated. Hence, there are n − 1 blue-dominated
columns. Since the left column is red, all rows but the top row are red dominated.
Hence, there are m − 1 red-dominated rows. The sum of these two quantities is
m + n− 2, as desired.

3. Let p be a fixed odd prime. A p-tuple (a1, a2, a3, . . . , ap) of integers is said to be
good if

(i) 0 ≤ ai ≤ p− 1 for all i, and

(ii) a1 + a2 + a3 + · · ·+ ap is not divisible by p, and

(iii) a1a2 + a2a3 + a3a4 + · · ·+ apa1 is divisible by p.

Determine the number of good p-tuples.

Solution. Let S be the set of all sequences (b1, b2, . . . , bp) of numbers from the
set {0, 1, 2, . . . , p − 1} such that b1 + b2 + · · · + bp is not divisible by p. We show
that |S| = pp − pp−1. For let b1, b2, . . . , bp−1 be an arbitrary sequence of numbers
chosen from {0, 1, 2, . . . , p − 1}. There are exactly p − 1 choices for bp such that
b1 + b2 + · · ·+ bp−1 + bp 6≡ 0 (mod p), and therefore |S| = pp−1(p− 1) = pp − pp−1.

Now it will be shown that the number of good sequences in S is 1
p
|S|. For a

sequence B = (b1, b2, . . . , bp) in S, define the sequence Bk = (a1, a2, . . . , ap) by

ai = bi − b1 + k mod p

for 1 ≤ i ≤ p. Now note that B in S implies that

a1 + a2 + · · ·+ ap ≡ (b1 + b2 + · · ·+ bp)− pb1 + pk ≡ (b1 + b2 + · · ·+ bp) 6≡ 0 (mod p)

and therefore Bk is in S for all non-negative k. Now note that Bk has first element
k for all 0 ≤ k ≤ p− 1 and therefore the sequences B0, B1, . . . , Bp−1 are distinct.



Now define the cycle of B as the set {B0, B1, . . . , Bp−1}. Note that B is in its
own cycle since B = Bk where k = b1. Now note that since every sequence in S is in
exactly one cycle, S is the disjoint union of cycles.

Now it will be shown that exactly one sequence per cycle is good. Consider
an arbitrary cycle B0, B1, . . . , Bp−1, and let B0 = (b1, b2, . . . , bp) where b0 = 0, and
note that Bk = (b1 + k, b2 + k, . . . , bp + k) mod p. Let u = b1 + b2 + · · · + bp, and
v = b1b2 + b2b3 + · · ·+ bpb1 and note that (b1 + k)(b2 + k) + (b2 + k)(b3 + k)) + · · ·+
(bp + k)(b1 + k) = u + 2kv mod p for all 0 ≤ k ≤ p− 1. Since 2v is not divisible by
p, there is exactly one value of k with 0 ≤ k ≤ p − 1 such that p divides u + 2kv
and it is exactly for this value of k that Bk is good. This shows that exactly one
sequence per cycle is good and therefore that the number of good sequences in S is
1
p
|S|, which is pp−1 − pp−2.

4. The quadrilateral ABCD is inscribed in a circle. The point P lies in the interior
of ABCD, and ∠PAB = ∠PBC = ∠PCD = ∠PDA. The lines AD and BC meet
at Q, and the lines AB and CD meet at R. Prove that the lines PQ and PR form
the same angle as the diagonals of ABCD.

Solution. . Let Γ be the circumcircle of quadrilateral ABCD. Let α = ∠PAB =
∠PBC∠PCD = ∠PDA and let T1 , T2 , T3 and T4 denote the circumcircles of
triangles APD, BPC, APB and CPD, respectively. Let M be the intersection of
T1 with line RP and let N be the intersection of T3 with line SP . Also let X denote
the intersection of diagonals AC and BD.

By power of a point for circles T1 and Γ, it follows that RM · RP = RA · RD =
RB · RC which implies that the quadrilateral BMPC is cyclic and M lies on T2.
Therefore ∠PMB = ∠PCB = α = ∠PAB = ∠DMP where all angles are directed.
This implies that M lies on the diagonal BD and also that ∠XMP = ∠DMP = α.
By a symmetric argument applied to S, T3 and T4, it follows that N lies on T4 and
that N lies on diagonal AC with ∠XNP = α. Therefore ∠XMP = ∠XNP and
X, M , P and N are concyclic. This implies that the angle formed by lines MP and
NP is equal to one of the angles formed by lines MX and NX. The fact that M
lies on BD and RP and N lies on AC and SP now implies the desired result.

5. Fix positive integers n and k ≥ 2. A list of n integers is written in a row on a
blackboard. You can choose a contiguous block of integers, and I will either add 1 to
all of them or subtract 1 from all of them. You can repeat this step as often as you
like, possibly adapting your selections based on what I do. Prove that after a finite
number of steps, you can reach a state where at least n − k + 2 of the numbers on
the blackboard are all simultaneously divisible by k.



Solution. We will think of all numbers as being residues mod k. Consider the
following strategy:

• If there are less than k − 1 non-zero numbers, then stop.

• If the first number is 0, then recursively solve on the remaining numbers.

• If the first number is j with 0 < j < k, then choose the interval stretching from
the first number to the jth-last non-zero number.

First note that this strategy is indeed well defined. The first number must have
value between 0 and k−1, and if we do not stop immediately, then there are at least
k − 1 non-zero numbers, and hence the third step can be performed.

For each j with 1 ≤ j ≤ k− 2, we claim the first number can take on the value of
j at most a finite number of times without taking on the value of j−1 in between. If
this were to fail, then every time the first number became j, I would have to add 1 to
the selected numbers to avoid making it j−1. This will always increase the j-th last
non-zero number, and that number will never be changed by other steps. Therefore,
that number would eventually become 0, and the next last non-zero number would
eventually become zero, and so on, until the first number itself becomes the j-th last
non-zero number, at which point we are done since j ≤ k − 2.

Rephrasing slightly, if 1 ≤ j ≤ k − 2, the first number can take on the value of j
at most a finite number of times between each time it takes on the value of j − 1. It
then immediately follows that if the first number can take on the value of j − 1 at
most a finite number of times, then it can also only take on the value of j a finite
number of times. However, if it ever takes on the value of 0, we have already reduced
the problem to n− 1, so we can assume that never happens. It then follows that the
first number can take on all the values 0, 1, 2, . . . , k − 2 at most a finite number of
times.

Finally, every time the first number takes on the value of k − 1, it must subse-
quently take on the value of k − 2 or 0, and so that can also happen only finitely
many times.


