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1. ABCD is a convex quadrilateral for which AB is the longest side. Points M and N are located on
sides AB and BC respectively, so that each of the segments AN and CM divides the quadrilateral
into two parts of equal area. Prove that the segment MN bisects the diagonal BD.

2. Determine all functions f defined on the set of rational numbers that take rational values for which

f(2f(x) + f(y)) = 2x + y ,

for each x and y.

3. Let a, b, c be positive real numbers for which a + b + c = 1. Prove that

a − bc

a + bc
+

b − ca

b + ca
+

c − ab

c + ab
≤

3

2
.

4. Determine all functions f defined on the natural numbers that take values among the natural numbers
for which

(f(n))p ≡ n mod f(p)

for all n ∈ N and all prime numbers p.

5. A self-avoiding rook walk on a chessboard (a rectangular grid of unit squares) is a path traced by
a sequence of moves parallel to an edge of the board from one unit square to another, such that
each begins where the previous move ended and such that no move ever crosses a square that has
previously been crossed, i.e., the rook’s path is non-self-intersecting.

Let R(m, n) be the number of self-avoiding rook walks on an m×n (m rows, n columns) chessboard
which begin at the lower-left corner and end at the upper-left corner. For example, R(m, 1) = 1 for
all natural numbers m; R(2, 2) = 2; R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each
natural number n.
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Solutions - CMO 2008

1. ABCD is a convex quadrilateral in which AB is the longest side. Points M and N are located on sides
AB and BC respectively, so that each of the segments AN and CM divides the quadrilateral into two
parts of equal area. Prove that the segment MN bisects the diagonal BD.

Solution. Since [MADC] = 1
2 [ABCD] = [NADC], it follows that [ANC] = [AMC], so that MN�AC.

Let m be a line through D parallel to AC and MN and let BA produced meet m at P and BC produced
meet m at Q. Then

[MPC] = [MAC] + [CAP ] = [MAC] + [CAD] = [MADC] = [BMC]

whence BM = MP . Similarly BN = NQ, so that MN is a midline of triangle BPQ and must bisect BD.

2. Determine all functions f defined on the set of rationals that take rational values for which

f(2f(x) + f(y)) = 2x + y

for each x and y.

Solution 1. The only solutions are f(x) = x for all rational x and f(x) = −x for all rational x. Both of
these readily check out.

Setting y = x yields f(3f(x)) = 3x for all rational x. Now replacing x by 3f(x), we find that

f(9x) = f(3f(3f(x)) = 3[3f(x)] = 9f(x) ,

for all rational x. Setting x = 0 yields f(0) = 9f(0), whence f(0) = 0.

Setting x = 0 in the given functional equation yields f(f(y)) = y for all rational y. Thus f is one-one
onto. Applying f to the functional equation yields that

2f(x) + f(y) = f(2x + y)

for every rational pair (x, y).

Setting y = 0 in the functional equation yields f(2f(x)) = 2x, whence 2f(x) = f(2x). Therefore
f(2x) + f(y) = f(2x + y) for each rational pair (x, y), so that

f(u + v) = f(u) + f(v)

for each rational pair (u, v).

Since 0 = f(0) = f(−1) + f(1), f(−1) = −f(1). By induction, it can be established that for each intger
n and rational x, f(nx) = nf(x). If k = f(1), we can establish from this that f(n) = nk, f(1/n) = k/n and
f(m/n) = mk/n for each integer pair (m,n). Thus f(x) = kx for all rational x. Since f(f(x)) = x, we must
have k2 = 1. Hence f(x) = x or f(x) = −x. These check out.

Solution 2. In the functional equation, let

x = y = 2f(z) + f(w)

to obtain f(x) = f(y) = 2z + w and

f(6z + 3w) = 6f(z) + 3f(w)
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Solution 2. In the functional equation, let

x = y = 2f(z) + f(w)

to obtain f(x) = f(y) = 2z + w and

f(6z + 3w) = 6f(z) + 3f(w)

1for all rational pairs (z, w). Set (z, w) = (0, 0) to obtain f(0) = 0, w = 0 to obtain f(6z) = 6f(z) and z = 0
to obtain f(3w) = 3f(w) for all rationals z and w. Hence f(6z + 3w) = f(6z) + f(3w). Replacing (6z, 3w)
by (u, v) yields

f(u + v) = f(u) + f(v)

for all rational pairs (u, v). Hence f(x) = kx where k = f(1) for all rational x. Substitution of this into the
functional equation with (x, y) = (1, 1) leads to 3 = f(3f(1)) = f(3k) = 3k2, so that k = ±1. It can be
checked that both f(x) ≡ 1 and f(x) ≡ −1 satisfy the equation.

Acknowledgment. The first solution is due to Man-Duen Choi and the second to Ed Doolittle.

3. Let a, b, c be positive real numbers for which a + b + c = 1. Prove that

a− bc

a + bc
+

b− ca

b + ca
+

c− ab

c + ab
≤

3
2
.

Solution 1. Note that
1 −

a− bc

a + bc
=

2bc
1 − b− c + bc

=
2bc

(1 − b)(1 − c)
.

The inequality is equivalent to

2bc
(1 − b)(1 − c)

+
2ca

(1 − c)(1 − a)
+

2ab
(1 − a)(1 − b)

≥
3
2
.

Manipulation yields the equivalent

4(bc + ca + ab− 3abc) ≥ 3(bc + ca + ab + 1 − a− b− c− abc) .

This simplifies to ab + bc + ca ≥ 9abc or
1
a

+
1
b

+
1
c
≥ 9 .

This is a consequence of the harmonic-arithmetic means inequality.

Solution 2. Observe that

a + bc = a(a + b + c) + bc = (a + b)(a + c)

and that a + b = 1 − c, with analogous relations for other permutations of the variables. Then

(b + c)(c + a)(a + b) = (1 − a)(1 − b)(1 − c) = (ab + bc + ca) − abc .

Putting the left side of the desired inequality over a common denominator, we find that it is equal to

(a− bc)(1 − a) + (b− ac)(1 − b) + (c− ab)(1 − c)
(b + c)(c + a)(a + b)

=
(a + b + c) − (a2 + b2 + c2) − (bc + ca + ab) + 3abc

(b + c)(c + a)(a + b)

=
1 − (a + b + c)2 + (bc + ca + ab) + 3abc

(ab + bc + ca) − abc

=
(bc + ca + ab) + 3abc
(bc + bc + ab) − abc

= 1 +
4abc

(a + b)(b + c)(c + a)
.

Using the arithmetic-geometric means inequality, we obtain that

(a + b)(b + c)(c + a) = (a2b + b2c + c2a) + (ab2 + bc2 + ca2) + 2abc
≥ 3abc + 3abc + 2abc = 8abc ,
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for all rational pairs (z, w). Set (z, w) = (0, 0) to obtain f(0) = 0, w = 0 to obtain f(6z) = 6f(z) and z = 0
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(a− bc)(1 − a) + (b− ac)(1 − b) + (c− ab)(1 − c)
(b + c)(c + a)(a + b)

=
(a + b + c) − (a2 + b2 + c2) − (bc + ca + ab) + 3abc

(b + c)(c + a)(a + b)

=
1 − (a + b + c)2 + (bc + ca + ab) + 3abc
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=
(bc + ca + ab) + 3abc
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= 1 +
4abc
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.

Using the arithmetic-geometric means inequality, we obtain that

(a + b)(b + c)(c + a) = (a2b + b2c + c2a) + (ab2 + bc2 + ca2) + 2abc
≥ 3abc + 3abc + 2abc = 8abc ,

2whence 4abc/[(a + b)(b + c)(c + a)] ≤ 1
2 . The desired result follows. Equality occurs exactly when a = b =

c = 1
3 .

4. Find all functions f defined on the natural numbers that take values among the natural numbers for
which

(f(n))p ≡ n mod f(p)

for all n ∈ N and all prime numbers p.

Solution. The substitution n = p, a prime, yields p ≡ (f(p))p ≡ 0 (mod f(p)), so that p is divisible by
f(p). Hence, for each prime p, f(p) = 1 or f(p) = p.

Let S = {p : p is prime and f(p) = p}. If S is infinite, then f(n)p ≡ n (mod p) for infinitely many
primes p. By the little Fermat theorem, n ≡ f(n)p ≡ f(n), so that f(n) − n is a multiple of p for infinitely
many primes p. This can happen only if f(n) = n for all values of n, and it can be verified that this is a
solution.

If S is empty, then f(p) = 1 for all primes p, and any function satisfying this condition is a solution.

Now suppose that S is finite and non-empty. Let q be the largest prime in S. Suppose, if possible, that
q ≥ 3. Therefore, for any prime p exceeding q, p ≡ 1 (mod q). However, this is not true. Let Q be the
product of all the odd primes up to q. Then Q + 2 must have a prime factor exceeding q and at least one
of them must be incongruent to 1 (mod q). (An alternative argument notes that Bertrand’s postulate can
turn up a prime p between q and 2q which fails to satisfy p ≡ 1 mod q.)

The only remaining case is that S = {2}. Then f(2) = 2 and f(p) = 1 for every odd prime p. Since
f(n)2 ≡ n (mod 2), f(n) and n must have the same parity. Conversely, any function f for which f(n) ≡ n
(mod 2) for all n, f(2) = 2 and f(p) = 1 for all odd primes p satisfies the condition.

Therefore the only solutions are
• f(n) = n for all n ∈ N;
• any function f with f(p) = 1 for all primes p;
• any function for which f(2) = 2, f(p) = 1 for primes p exceeding 2 and f(n) and n have the same

parity.

5. A self-avoiding rook walk on a chessboard (a rectangular grid of squares) is a path traced by a sequence
of rook moves parallel to an edge of the board from one unit square to another, such that each begins
where the previous move ended and such that no move ever crosses a square that has previously been
crossed, i.e., the rook’s path is non-self-intersecting.

Let R(m,n) be the number of self-avoiding rook walks on an m × n (m rows, n columns) chessboard
which begin at the lower-left corner and end at the upper-left corner. For example, R(m, 1) = 1 for all
natural numbers m; R(2, 2) = 2; R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each natural
number n.

Solution 1. Let rn = R(3, n). It can be checked directly that r1 = 1 and r2 = 4. Let 1 ≤ i ≤ 3 and
1 ≤ j; let (i, j) denote the cell in the ith row from the bottom and the jth column from the left, so that the
paths in question go from (1, 1) to (3, 1).

Suppose that n ≥ 3. The rook walks fall into exactly one of the following six categories:

(1) One walk given by (1, 1) → (2, 1) → (3, 1).

(2) Walks that avoid the cell (2, 1): Any such walk must start with (1, 1) → (1, 2) and finish with (3, 2) →
(3, 1); there are rn−1 such walks.

(3) Walks that begin with (1, 1) → (2, 1) → (2, 2) and never return to the first row: Such walks enter the
third row from (2, k) for some k with 2 ≤ k ≤ n and then go along the third row leftwards to (3, 1); there
are n− 1 such walks.
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where the previous move ended and such that no move ever crosses a square that has previously been
crossed, i.e., the rook’s path is non-self-intersecting.

Let R(m,n) be the number of self-avoiding rook walks on an m × n (m rows, n columns) chessboard
which begin at the lower-left corner and end at the upper-left corner. For example, R(m, 1) = 1 for all
natural numbers m; R(2, 2) = 2; R(3, 2) = 4; R(3, 3) = 11. Find a formula for R(3, n) for each natural
number n.

Solution 1. Let rn = R(3, n). It can be checked directly that r1 = 1 and r2 = 4. Let 1 ≤ i ≤ 3 and
1 ≤ j; let (i, j) denote the cell in the ith row from the bottom and the jth column from the left, so that the
paths in question go from (1, 1) to (3, 1).

Suppose that n ≥ 3. The rook walks fall into exactly one of the following six categories:

(1) One walk given by (1, 1) → (2, 1) → (3, 1).

(2) Walks that avoid the cell (2, 1): Any such walk must start with (1, 1) → (1, 2) and finish with (3, 2) →
(3, 1); there are rn−1 such walks.

(3) Walks that begin with (1, 1) → (2, 1) → (2, 2) and never return to the first row: Such walks enter the
third row from (2, k) for some k with 2 ≤ k ≤ n and then go along the third row leftwards to (3, 1); there
are n− 1 such walks.

3
(4) Walks that begin with (1, 1) → (2, 1) → · · · → (2, k) → (1, k) → (1, k + 1) and end with (3, k + 1) →
(3, k) → (3, k − 1) → · · · → (3, 2) → (3, 1) for some k with 2 ≤ k ≤ n− 1; there are rn−2 + rn−3 + · · · + r1
such walks.
(5) Walks that are the horizontal reflected images of walks in (3) that begin with (1, 1) → (2, 1) and never
enter the third row until the final cell; there are n− 1 such walks.
(6) Walks that are horizontal reflected images of walks in (5); there are rn−2 + rn−3 + · · · + r1 such walks.

Thus, r3 = 1 + r2 + 2(2 + r1) = 11 and, for n ≥ 3,

rn = 1 + rn−1 + 2[(n− 1) + rn−2 + rn−3 + · · · + r1]
= 2n− 1 + rn−1 + 2(rn−2 + · · · + r1) ,

and
rn+1 = 2n + 1 + rn + 2(rn−1 + rn−2 + · · · + r1) .

Therefore
rn+1 − rn = 2 + rn + rn−1 =⇒ rn+1 = 2 + 2rn + rn−1 .

Thus
rn+1 + 1 = 2(rn + 1) + (rn−1 + 1) ,

whence
rn + 1 =

1
2
√

2
(1 +

√
2)n+1 − 1

2
√

2
(1 −

√
2)n+1 ,

and
rn =

1
2
√

2
(1 +

√
2)n+1 − 1

2
√

2
(1 −

√
2)n+1 − 1 .

Solution 2. Employ the same notation as in Solution 1. We have that r1 = 1, r2 = 4 and r3 = 11. Let
n ≥ 3. Consider the situation that there are rn+1 columns. There are basically three types of rook walks.

Type 1. There are four rook walks that enter only the first two columns.

Type 2. There are 3rn−1 rooks walks that do not pass between the second and third columns in the
middle row (in either direction), viz. rn−1 of each of the types:

(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ;

(1, 1) −→ (2, 1) −→ (2, 2) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ;

(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (2, 2) −→ (2, 1) −→ (3, 1) .

Type 3. Consider the rook walks that pass between the second and third column along the middle row.
They are of Type 3a:

(1, 1) −→ ∗ −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ,

or Type 3b:
(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ ∗ −→ (3, 1) ,

where in each case the asterisk stands for one of two possible options.

We can associate in a two-one way the walks of Type 3a to a rook walk on the last n columns, namely

(1, 2) −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2)

and the walks of Type 3b to a rook walk on the last n columns, namely

(1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ (3, 2) .
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(4) Walks that begin with (1, 1) → (2, 1) → · · · → (2, k) → (1, k) → (1, k + 1) and end with (3, k + 1) →
(3, k) → (3, k − 1) → · · · → (3, 2) → (3, 1) for some k with 2 ≤ k ≤ n− 1; there are rn−2 + rn−3 + · · · + r1
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Thus
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whence
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√

2
(1 +

√
2)n+1 − 1

2
√

2
(1 −

√
2)n+1 ,

and
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√
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2)n+1 − 1

2
√

2
(1 −

√
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Solution 2. Employ the same notation as in Solution 1. We have that r1 = 1, r2 = 4 and r3 = 11. Let
n ≥ 3. Consider the situation that there are rn+1 columns. There are basically three types of rook walks.

Type 1. There are four rook walks that enter only the first two columns.

Type 2. There are 3rn−1 rooks walks that do not pass between the second and third columns in the
middle row (in either direction), viz. rn−1 of each of the types:

(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ;
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(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (2, 2) −→ (2, 1) −→ (3, 1) .

Type 3. Consider the rook walks that pass between the second and third column along the middle row.
They are of Type 3a:

(1, 1) −→ ∗ −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2) −→ (3, 1) ,

or Type 3b:
(1, 1) −→ (1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ ∗ −→ (3, 1) ,

where in each case the asterisk stands for one of two possible options.

We can associate in a two-one way the walks of Type 3a to a rook walk on the last n columns, namely

(1, 2) −→ (2, 2) −→ (2, 3) −→ · · · −→ (3, 3) −→ (3, 2)

and the walks of Type 3b to a rook walk on the last n columns, namely

(1, 2) −→ (1, 3) −→ · · · −→ (2, 3) −→ (2, 2) −→ (3, 2) .

4The number of rook walks of the latter two types together is rn − 1− rn−1. From the number of rook walks
on the last n columns, we subtract one for (1, 2) → (2, 2) → (3, 2) and rn−1 for those of the type

(1, 2) −→ (1, 3) −→ · · · −→ (3, 3) −→ (2, 3) .

Therefore, the number of rook walks of Type 3 is 2(rn − 1 − rn−1) and we find that

rn+1 = 4 + 3rn−1 + 2(rn − 1 − rn−1) = 2 + 2rn + rn−1 .

We can now complete the solution as in Solution 1.

Solution 3. Let S(3, n) be the set of self-avoiding rook walks in which the rook occupies column n but
does not occupy column n+1. Then R(3, n) = |S(3, 1)|+ |S(3, 2)|+ · · ·+ |S(3, n)|. Furthermore, topological
considerations allow us to break S(3, n) into three disjoint subsets S1(3, n), the set of paths in which corner
(1, n) is not occupied, but there is a path segment (2, n) −→ (3, n); S2(3, n), the set of paths in which corners
(1, n) and (3, n) are both occupied by a path (1, n) −→ (2, n) −→ (3, n); and S3(3, n), the set of paths in
which corner (3, n) is not occupied but there is a path segment (1, n) −→ (2, n). Let si(n) = |Si(3, n)| for
i = 1, 2, 3. Note that s1(1) = 0, s2(1) = 1 and s3(1) = 0. By symmetry, s1(n) = s3(n) for every positive n.
Furthermore, we can construct paths in S(3, n + 1) by “bulging” paths in S(3, n), from which we obtain

s1(n + 1) = s1(n) + s2(n) ;
s2(n + 1) = s1(n) + s2(n) + s3(n) ;
s3(n + 1) = s2(n) + s3(n) ;

or, upon simplification,
s1(n + 1) = s1(n) + s2(n) ;
s2(n + 1) = 2s1(n) + s2(n) .

Hence, for n ≥ 2,
s1(n + 1) = s1(n) + 2s1(n− 1) + s2(n− 1)

= s1(n) + 2s1(n− 1) + s1(n) − s1(n− 1)
= 2s1(n) + s1(n− 1) .

and
s2(n + 1) = 2s1(n) + s2(n) = 2s1(n− 1) + 2s2(n− 1) + s2(n)

= s2(n) − s2(n− 1) + 2s2(n− 1) + s2(n)
= 2s2(n) + s2(n− 1) .

We find that
s1(n) =

1
2
√

2
(1 +

√
2)n−1 − 1

2
√

2
(1 −

√
2)n−1 ;

s2(n) =
1
2

(1 +
√

2)n−1 +
1
2

(1 −
√

2)n−1 .

Summing a geometric series yields that

R(3, n) = (s2(1) + · · · + s2(n)) + 2(s1(1) + · · · + s1(n))

=
�

1
2

+
1√
2

��

(1 +
√

2)n − 1√
2

�

+
�

1
2
− 1√

2

��

(1 −
√

2)n − 1
−
√

2

�

=
�

1
2
√

2

�

[(1 +
√

2)n+1 − (1 −
√

2)n+1] − 1 .

The formula agrees with R(3, 1) = 1, R(3, 2) = 4 and R(3, 3) = 11.

Acknowledgment. The first two solutions are due to Man-Duen Choi, and the third to Ed Doolittle.
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