
Solutions to the 2003 CMO
written March 26, 2003

1. Consider a standard twelve-hour clock whose hour and minute hands move continu-
ously. Let m be an integer, with 1 ≤ m ≤ 720. At precisely m minutes after 12:00, the
angle made by the hour hand and minute hand is exactly 1◦. Determine all possible
values of m.

Solution

The minute hand makes a full revolution of 360◦ every 60 minutes, so after m minutes
it has swept through 360

60
m = 6m degrees. The hour hand makes a full revolution every

12 hours (720 minutes), so after m minutes it has swept through 360
720

m = m/2 degrees.
Since both hands started in the same position at 12:00, the angle between the two
hands will be 1◦ if 6m − m/2 = ±1 + 360k for some integer k. Solving this equation
we get

m =
720k ± 2

11
= 65k +

5k ± 2

11
.

Since 1 ≤ m ≤ 720, we have 1 ≤ k ≤ 11. Since m is an integer, 5k±2 must be divisible
by 11, say 5k ± 2 = 11q. Then

5k = 11q ± 2 ⇒ k = 2q +
q ± 2

5
.

If is now clear that only q = 2 and q = 3 satisfy all the conditions. Thus k = 4 or
k = 7 and substituting these values into the expression for m we find that the only
possible values of m are 262 and 458.



2. Find the last three digits of the number 200320022001
.

Solution

We must find the remainder when 200320022001
is divided by 1000, which will be the

same as the remainder when 320022001
is divided by 1000, since 2003 ≡ 3 (mod 1000).

To do this we will first find a positive integer n such that 3n ≡ 1 (mod 1000) and then
try to express 20022001 in the form nk + r, so that

200320022001 ≡ 3nk+r ≡ (3n)k · 3r ≡ 1k · 3r ≡ 3r (mod 1000).

Since 32 = 10 − 1, we can evaluate 32m using the binomial theorem:

32m = (10 − 1)m = (−1)m + 10m(−1)m−1 + 100
m(m − 1)

2
(−1)m−2 + · · · + 10m.

After the first 3 terms of this expansion, all remaining terms are divisible by 1000, so
letting m = 2q, we have that

34q ≡ 1 − 20q + 100q(2q − 1) (mod 1000). (1)

Using this, we can check that 3100 ≡ 1 (mod 1000) and now we wish to find the
remainder when 20022001 is divided by 100.

Now 20022001 ≡ 22001 (mod 100) ≡ 4 · 21999 (mod 4 · 25), so we’ll investigate powers of
2 modulo 25. Noting that 210 = 1024 ≡ −1 (mod 25), we have

21999 = (210)199 · 29 ≡ (−1)199 · 512 ≡ −12 ≡ 13 (mod 25).

Thus 22001 ≡ 4 · 13 = 52 (mod 100). Therefore 20022001 can be written in the form
100k + 52 for some integer k, so

200320022001 ≡ 352 (mod 1000) ≡ 1 − 20 · 13 + 1300 · 25 ≡ 241 (mod 1000)

using equation (1). So the last 3 digits of 200320022001
are 241.



3. Find all real positive solutions (if any) to

x3 + y3 + z3 = x + y + z, and

x2 + y2 + z2 = xyz.

Solution 1

Let f(x, y, z) = (x3 − x) + (y3 − y) + (z3 − z). The first equation above is equivalent
to f(x, y, z) = 0. If x, y, z ≥ 1, then f(x, y, z) ≥ 0 with equality only if x = y = z = 1.
But if x = y = z = 1, then the second equation is not satisfied. So in any solution to
the system of equations, at least one of the variables is less than 1. Without loss of
generality, suppose that x < 1. Then

x2 + y2 + z2 > y2 + z2 ≥ 2yz > yz > xyz.

Therefore the system has no real positive solutions.

Solution 2

We will show that the system has no real positive solution. Assume otherwise.

The second equation can be written x2 − (yz)x + (y2 + z2). Since this quadratic in x
has a real solution by hypothesis, its discrimant is nonnegative. Hence

y2z2 − 4y2 − 4z2 ≥ 0.

Dividing through by 4y2z2 yields

1

4
≥ 1

y2
+

1

z2
≥ 1

y2
.

Hence y2 ≥ 4 and so y ≥ 2, y being positive. A similar argument yields x, y, z ≥ 2.
But the first equation can be written as

x(x2 − 1) + y(y2 − 1) + z(z2 − 1) = 0,

contradicting x, y, z ≥ 2. Hence, a real positive solution cannot exist.



Solution 3

Applying the arithmetic-geometric mean inequality and the Power Mean Inequalities
to x, y, z we have

3
√

xyz ≤ x + y + z

3
≤

√
x2 + y2 + z2

3
≤ 3

√
x3 + y3 + z3

3
.

Letting S = x + y + z = x3 + y3 + z3 and P = xyz = x2 + y2 + z2, this inequality can
be written

3
√

P ≤ S

3
≤

√
P

3
≤ 3

√
S

3
.

Now 3
√

P ≤
√

P
3

implies P 2 ≤ P 3/27, so P ≥ 27. Also S
3
≤ 3

√
S
3

implies S3/27 ≤ S/3,

so S ≤ 3. But then 3
√

P ≥ 3 and 3

√
S
3
≤ 1 which is inconsistent with 3

√
P ≤ 3

√
S
3
.

Therefore the system cannot have a real positive solution.



4. Prove that when three circles share the same chord AB, every line through A different
from AB determines the same ratio XY : Y Z, where X is an arbitrary point different
from B on the first circle while Y and Z are the points where AX intersects the other
two circles (labelled so that Y is between X and Z).

l
A

B

Z
Y

X
α

β
γ

Solution 1

Let l be a line through A different from AB and join B to A, X, Y and Z as in the
above diagram. No matter how l is chosen, the angles AXB, AY B and AZB always
subtend the chord AB. For this reason the angles in the triangles BXY and BXZ are
the same for all such l. Thus the ratio XY : Y Z remains constant by similar triangles.

Note that this is true no matter how X, Y and Z lie in relation to A. Suppose X, Y and
Z all lie on the same side of A (as in the diagram) and that ]AXB = α, ]AY B = β
and ]AZB = γ. Then ]BXY = 180◦ − α, ]BY X = β, ]BY Z = 180◦ − β and
]BZY = γ. Now suppose l is chosen so that X is now on the opposite side of A from
Y and Z. Now since X is on the other side of the chord AB, ]AXB = 180◦ − α, but
it is still the case that ]BXY = 180◦ − α and all other angles in the two pertinent
triangles remain unchanged. If l is chosen so that X is identical with A, then l is
tangent to the first circle and it is still the case that ]BXY = 180◦ − α. All other
cases can be checked in a similar manner.



l
A

B

Z
Y

X

O1 O2 O3

P Q R

Solution 2

Let m be the perpendicular bisector of AB and let O1, O2, O3 be the centres of the
three circles. Since AB is a chord common to all three circles, O1, O2, O3 all lie on m.
Let l be a line through A different from AB and suppose that X, Y , Z all lie on the
same side of AB, as in the above diagram. Let perpendiculars from O1, O2, O3 meet l
at P , Q, R, respectively. Since a line through the centre of a circle bisects any chord,

AX = 2AP, AY = 2AQ and AZ = 2AR.

Now

XY = AY − AX = 2(AQ − AP ) = 2PQ and, similarly, Y Z = 2QR.

Therefore XY : Y Z = PQ : QR. But O1P ||O2Q ||O3R, so PQ : QR = O1O2 : O2O3.
Since the centres of the circles are fixed, the ratio XY : Y Z = O1O2 : O2O3 does not
depend on the choice of l.

If X, Y , Z do not all lie on the same side of AB, we can obtain the same result with
a similar proof. For instance, if X and Y are opposite sides of AB, then we will have
XY = AY + AX, but since in this case PQ = AQ + AP , it is still the case that
XY = 2PQ and result still follows, etc.



5. Let S be a set of n points in the plane such that any two points of S are at least 1
unit apart. Prove there is a subset T of S with at least n/7 points such that any two
points of T are at least

√
3 units apart.

Solution

We will construct the set T in the following way: Assume the points of S are in the
xy-plane and let P be a point in S with maximum y-coordinate. This point P will be a
member of the set T and now, from S, we will remove P and all points in S which are
less than

√
3 units from P . From the remaining points we choose one with maximum

y-coordinate to be a member of T and remove from S all points at distance less than√
3 units from this new point. We continue in this way, until all the points of S are

exhausted. Clearly any two points in T are at least
√

3 units apart. To show that T
has at least n/7 points, we must prove that at each stage no more than 6 other points
are removed along with P .

At a typical stage in this process, we’ve selected a point P with maximum y-coordinate,
so any points at distance less than

√
3 from P must lie inside the semicircular region

of radius
√

3 centred at P shown in the first diagram below. Since points of S are at
least 1 unit apart, these points must lie outside (or on) the semicircle of radius 1. (So
they lie in the shaded region of the first diagram.) Now divide this shaded region into
6 congruent regions R1, R2, . . . , R6 as shown in this diagram.

We will show that each of these regions contains at most one point of S. Since all 6
regions are congruent, consider one of them as depicted in the second diagram below.
The distance between any two points in this shaded region must be less than the length
of the line segment AB. The lengths of PA and PB are

√
3 and 1, respectively, and

angle APB = 30◦. If we construct a perpendicular from B to PA at C, then the length
of PC is cos 30◦ =

√
3/2. Thus BC is a perpendicular bisector of PA and therefore

AB = PB = 1. So the distance between any two points in this region is less than 1.
Therefore each of R1, . . . , R6 can contain at most one point of S, which completes the
proof.
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√
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