2002 Canadian Mathematical Olympiad
Solutions

1. Let S be a subset of {1,2,...,9}, such that the sums formed by adding each unordered pair of
distinct numbers from S are all different. For example, the subset {1, 2, 3, 5} has this property,
but {1,2,3,4,5} does not, since the pairs {1,4} and {2, 3} have the same sum, namely 5.

What is the maximum number of elements that S can contain?

Solution 1
It can be checked that all the sums of pairs for the set {1,2,3,5,8} are different.

Suppose, for a contradiction, that S is a subset of {1,...,9} containing 6 elements such that
all the sums of pairs are different. Now the smallest possible sum for two numbers from S is
1+ 2 = 3 and the largest possible sum is 8 + 9 = 17. That gives 15 possible sums: 3,...,17.
Also there are < g ) = 15 pairs from S. Thus, each of 3,...,17 is the sum of exactly one
pair. The only pair from {1,...,9} that adds to 3 is {1,2} and to 17 is {8,9}. Thus 1,2,8,9
are in S. But then 14+9 = 248, giving a contradiction. It follows that the maximum number
of elements that S can contain is 5.

Solution 2.
It can be checked that all the sums of pairs for the set {1,2,3,5,8} are different.

Suppose, for a contradiction, that S is a subset of {1,...9} such that all the sums of pairs
are different and that a1 < as < ... < ag are the members of S.

Since a1 + ag # as + as, it follows that ag — a5 # as — a1. Similarly ag — a5 # a4 — a3 and
a4 — as # as — a1. These three differences must be distinct positive integers, so,

(a6 —as)+ (as —az)+(ag—a1) >1+2+3=6.
Similarly a3 — as # as — a4, SO
(ag—a2)+(a5—a4)21+2:3.

Adding the above 2 inequalities yields

ag —as+as —aqg+a4—az+a3—az+ax—a; >6+3=9,

and hence ag — a; > 9. This is impossible since the numbers in S are between 1 and 9.



2. Call a positive integer n practical if every positive integer less than or equal to n can be
written as the sum of distinct divisors of n.

For example, the divisors of 6 are 1, 2, 3, and 6 . Since
1=1, 2=2, 3=3, 4=1+3, 5=2+3, 6=6,

we see that 6 is practical.

Prove that the product of two practical numbers is also practical.

Solution
Let p and ¢ be practical. For any k£ < pq, we can write

k=aq+b with 0<a<p, 0<b<yq.
Since p and ¢ are practical, we can write
a=c1+...4+¢p, b=di+...+d,
where the ¢;’s are distinct divisors of p and the d;’s are distinct divisors of g. Now

E = (aa+...+cm)g+(di+...+dyp)
= cq+...+cnqg+di+...+d,.

Each of ¢;q and d; divides pg. Since d; < q < ¢;q for any i, j, the ¢;¢’s and d;’s are all distinct,
and we conclude that pq is practical.



3. Prove that for all positive real numbers a, b, and c,

a® b <
—+—+—=2>a+tb+tg,
bc  ca ab

and determine when equality occurs.

Each of the inequalities used in the solutions below has the property that equality holds if
and only if @ = b = ¢. Thus equality holds for the given inequality if and only if a = b = ¢.
Solution 1.

44 pt ! 4 4
Note that a? + 1 + ¢t = (& £8)  (OTFc) (@ +a)

mean inequality to each term, we see that the right side is greater than or equal to

. Applying the arithmetic-geometric

a’b? + b2 + a’.
We can rewrite this as

a?(b* +¢c*) V(2 +a?)  A(a®+b?)
2 + 2 + 2

Applying the arithmetic mean-geometric mean inequality again we obtain a* + b* 4+ ¢* >
a®bc + bca + c?ab. Dividing both sides by abc (which is positive) the result follows.

Solution 2.

Notice the inequality is homogeneous. That is, if a,b, ¢ are replaced by ka, kb, kc, k > 0 we
get the original inequality. Thus we can assume, without loss of generality, that abc = 1.

Then
a vl a v
244 = gbel=4+ 4+
bc+ca+ab ac(bc+ca+ab>

= a*+b' +ch
So we need prove that a* +b* +c* > a+b+c.
By the Power Mean Inequality,
at + bt <a+b+c>4
3 - 3 ’

(a+b+c)

soat +b +ct > (a+b+e)- >

b .

By the arithmetic mean-geometric mean inequality, w > Vabe = 1,s0a+b+c> 3.
b 3 33

Hence, a* +b* + ¢* > (a+b+c)~w >(a+bte)z =atbte

Solution 3.
Rather than using the Power-Mean inequality to prove a* + b* + ¢* > a + b + ¢ in Proof 2,
the Cauchy-Schwartz-Bunjakovsky inequality can be used twice:
(a* +b* + M2 +12+1%) > (a®+ % +P)?
(@®+b*+)(1*+1°+1%) > (a+b+c)?
at + bt + ! - (a® + b2 + ¢2)? - (a+b+c)
3 - 9 - 81

So . Continue as in Proof 2.



4. Let T be a circle with radius 7. Let A and B be distinct points on I' such that AB < /3r.
Let the circle with centre B and radius AB meet I' again at C. Let P be the point inside
I' such that triangle ABP is equilateral. Finally, let C' P meet I" again at (). Prove that
PQ =r.

Solution 1.

Let the center of I be O, the radius r. Since BP = BC, let § = K BPC = {BCP.
Quadrilateral QABC is cyclic, so £ BAQ = 180° — # and hence £ PAQ = 120° — 0.

Also LAPQ = 180° — LAPB — 4BPC = 120° — 0, so PQ = AQ and {AQP = 20 — 60°.
Again because quadrilateral QABC is cyclic, { ABC = 180° — L AQC = 240° — 260 .
Triangles OAB and OCB are congruent, since OA = OB = OC =r and AB = BC.

Thus LABO = £CBO = %AABC =120° — 6.

We have now shown that in triangles AQP and AOB, L PAQ = K BAO = {APQ = £{ABO.
Also AP = AB, so ANAQP = ANAOB. Hence QP = OB =.

Solution 2.

Let the center of I' be O, the radius r. Since A, P and C lie on a circle centered at B,
60° = LABP = 2{LACP, s0o LACP = LACQ = 30°.

Since @, A, and C lieon I', LQOA =24QCA = 60°.

So QA = r since if a chord of a circle subtends an angle of 60° at the center, its length is the
radius of the circle.

Now BP = BC, so {BPC = 4{BCP = LACB + 30°.
Thus LAPQ = 180° — LAPB — 4{BPC = 90° — LACB.

Since ), A, B and C'lieon I' and AB = BC, LAQP = LAQC = LAQB+4BQC = 2L ACB.
Finally, QAP = 180 — LAQP — £APQ = 90 — LACB.

So LPAQ = LAPQ hence PQ = AQ =r.



5. Let N={0,1,2,...}. Determine all functions f : N — N such that

zf(y) +yf(a) = (x+y)f@® +y?)
for all  and y in N.
Solution 1.
We claim that f is a constant function. Suppose, for a contradiction, that there exist = and

y with f(z) < f(y); choose z,y such that f(y) — f(z) > 0 is minimal. Then

f(z) = vf(@) +yf(@) _ofly) +yfl@) _ 2fy) +yf)
r+y r+y r+y

so f(z) < f(xz?+9?) < f(y) and 0 < f(2® + y?) — f(z) < f(y) — f(x), contradicting the

choice of x and y. Thus, f is a constant function. Since f(0) is in N, the constant must be

from N.

= f(y)

Also, for any ¢ in N, zc + yc = (z + y)c for all z and y, so f(z) = ¢, ¢ € N are the solutions
to the equation.

Solution 2.

We claim f is a constant function. Define g(x) = f(x) — f(0). Then g(0) =0, g(x) > —f(0)
and

29(y) +yg(z) = (x +y)g(2* +y°)
for all ,y in N.

Letting y = 0 shows g(x?) = 0 (in particular, g(1) = g(4) = 0), and letting = y = 1 shows
g(2) = 0. Also, if z,y and z in N satisfy 22 + y? = 22, then

9(y) = —Zg(0). ()

Letting x = 4 and y = 3, (%) shows that ¢g(3) = 0.

For any even number x = 2n > 4, let y = n?> — 1. Then y > x and 22 + y? = (n? + 1)%2. For
any odd number = 2n+1 > 3, let y = 2(n+1)n. Then y > x and 2% +y? = ((n+1)2+n?)2.
Thus for every x > 4 there is y > x such that (x) is satisfied.

Suppose for a contradiction, that there is x > 4 with g(x) > 0. Then we can construct a

2
sequence ¥ = xg < Ty < 3 < ... where g(zi41) = — -2 g(x;). It follows that |g(zii1)| >

(2
|g(z;)| and the signs of g(x;) alternate. Since g(x) is always an integer, |g(z;+1)| > |g(z;)|+ 1.
Thus for some sufficiently large value of i, g(z;) < —f(0), a contradiction.

As for Proof 1, we now conclude that the functions that satisfy the given functional equation
are f(x) =¢, ceN.

Solution 3. Suppose that W is the set of nonnegative integers and that f : W — W satisfies:
af(y) +yf(e) = (z+y)f(a® +y°). ()

We will show that f is a constant function.
Let f(0) =k, and set S = {x | f(x) = k}.
Letting y = 0 in (%) shows that f(z?) =k V x>0, and so

eSS V>0 (1)



In particular, 1 € S.
Suppose 2% 4 32 = 2%. Then yf(z) + zf(y) = (z +y) f(2*) = (x + y)k. Thus,

xeS iff yelb. (2)

whenever 22 + 32 is a perfect square.

For a contradiction, let n be the smallest non-negative integer such that f(2") # k. By (1) n

1 -1 ne n—
must be odd, so is an integer. Now nT <n so f(QTl) = k. Letting x =y = 2"

in (%) shows f(2") = k, a contradiction. Thus every power of 2 is an element of S.

For each integer n > 2 define p(n) to be the largest prime such that p(n) | n.

Claim: For any integer n > 1 that is not a power of 2, there exists a sequence of integers

T1,T9,...,2, such that the following conditions hold:
a) ] =n.
b) 93? + a:?_H is a perfect square for each ¢ =1,2,3,...,7 — 1.

¢) pler) = plas) > ... > play) = 2.

Proof: Since n is not a power of 2, p(n) = p(x1) > 3. Let p(x1) =2m + 1, son = x1 =
b(2m + 1)?, for some a and b, where p(b) < 2m + 1.

Case 1: a = 1. Since (2m+1,2m?+2m, 2m?+2m+1) is a Pythagorean Triple, if 2o = b(2m?2+
2m), then 2% + 2% = b%(2m? + 2m + 1)? is a perfect square. Furthermore, x5 = 2bm(m + 1),
and so p(z2) < 2m + 1 = p(x1).

Case 2: a > 1. If n =21 = 2m +1)%-b, let 29 = (2m + 1) L. b (2m? + 2m), 23 =
2m+1)272.b-2m2+2m)?, ..., zar1 = 2m+1)2-b- (2m2 +2m)?® = b-2%m?(m +1)%. Note
that for 1 <i < a, 22 —i—x?H is a perfect square and also note that p(xq41) < 2m+1 = p(x1).

If z441 is not a power of 2, we extend the sequence x; using the same procedure described
above. We keep doing this until p(z,) = 2, for some integer r.

By (2), z; € Siff x;41 € S fori=1,2,3,...,r — 1. Thus, n = z; € S iff x, € S. But z, is
a power of 2 because p(z,) = 2, and we earlier proved that powers of 2 are in S. Therefore,
n € 5, proving the claim.

We have proven that every integer n > 1 is an element of S, and so we have proven that
f(n) =k = f(0), for each n > 1. Therefore, f is constant, Q.E.D.



