CMO 1996
SOLUTIONS

QUESTION 1

Solution .

If fz) =23 —2 1= (z — a)(z — B)(x — ) has roots a, 3,7 standard results about roots of
polynomials give a« + + v =0, a8 + ay + By = —1, and afy = 1.

Then l+a 148 1+ N
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where the numerator simplifies to

N=3—(a+8+7) — (af+ay+ p7y)+ 3aby
=3—(0)—(—1)+3(1)
=T1.

The denominator is f(1) = —1 so the required sum is —7.



QUESTION 2

Solution 1.
2

For any t, 0 < 4t <1 + 412, soogm

than 1.

< 1. Thus z, y and z must be non-negative and less

Observe that if one of x y or z is 0, then x =y = 2 = 0.

If two of the variables are equal, say x = y, then the first equation becomes

42 _

14422
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This has the solution x = 0, which gives z =y =2 =0 and = = 3 which gives r =y =2 = 3

Finally, assume that x, y and z are non-zero and distinct. Without loss of generality we may
assume that either 0 < z <y <z<lor0 <z <z <y <1 The two proofs are similar, so we do
only the first case.

42
We will need the fact that f(t) = 152 is increasing on the interval (0, 1).
To prove this, if 0 < s <t < 1 then
44> 482
t)— f(s) = -
f(t) = 1) 1+4t2 14452
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(1 +482)(1 + 412)

> 0.

So0<z<y<z= f(z)=y< f(y) =2z < f(z) =z, a contradiction.
1
Hencezr=y=z=0andx=y=2= 3 are the only real solutions.

Solution 2.

Notice that x,y and z are non-negative. Adding the three equations gives

422 472 49
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r+y+z=

This can be rearranged to give

o2z —1)?  yRy-1?%  z2(2z-1)% 0
1+ 422 1+ 4y? 14422 7

1
Since each term is non-negative, each term must be 0, and hence each variable is either 0 or 5 The

1
original equations then show that r=y=z=0andx =y =2 = 3 are the only two solutions.



Solution 3.

Notice that x, y, and z are non-negative. Multiply both sides of the inequality

Y
>0
1+4y? —

by (2y — 1)2, and rearrange to obtain

4y2

_ >
14+4y% —

Y

9

and hence that y > z. Similarly, z > z, and = > y. Hence, x = y = z and, as in Solution 1, the
two solutions follow.

Solution 4.

As for solution 1, note that x = y = z = 0 is a solution and any other solution will have each of
xz,y and z positive.

. : : . : . . 1+ 422
The arithmetic-geometric mean inequality (or direct computation) shows that > V1422 =2z

2

4a? 1

Tz +$4 > —. Similarly, y > z
x

1 1
with equality if and only if y = 3 and z > x with equality if and only if z = 3 Addingx >y, y> =z

and hence z > =y, with equality if and only if 1 = 422 — that is, x =

\V)

1
and z > z gives c+y+z > x+y+2z. Thus equality must occur in each inequality, sox =y = z = 3"



QUESTION 3

Solution.
Let a1, a9, ...,a, be a permutation of 1,2,...,n with properties (i) and (ii).

A crucial observation, needed in Case II (b) is the following: If a; and ag11 are consecutive integers
(i.e. agq41 = ap £ 1), then the terms to the right of ar;1 (also to the left of ai) are either all less
than both ag and agy1 or all greater than both ax and ag41.

Since a1 = 1, by (ii) ag is either 2 or 3.

CASE I: Suppose as = 2. Then as,aq,...,ay, is a permutation of 3,4,...,n. Thus as,as,...,an
is a permutation of 2,3,...,n with aa = 2 and property (ii). Clearly there are f(n — 1) such
permutations.

CASE II: Suppose as = 3.

(a) Suppose ag = 2. Then ay,as,...,a, is a permutation of 4,5,...,n with as = 4 and property
(ii). There are f(n — 3) such permutations.

(b) Suppose az > 4. If agy; is the first even number in the permutation then, because of (ii),
ai,ag,...,ar must be 1,3,5,...,2k — 1 (in that order). Then ay; is either 2k or 2k — 2, so
that ax and ag1 are consecutive integers. Applying the crucial observation made above, we
deduce that ag12,...,a, are all either greater than or smaller than a; and ax4q. But 2 must
be to the right of a;y1. Hence agya,...,a, are the even integers less than ap;1. The only
possibility then, is

1,3,5,...,a_1,a,...,6,4,2.
Cases I and II show that
fm)=fn=1)+ f(n—3)+1, n>4. (%)

Calculating the first few values of f(n) directly gives

f(l):L f(2):17 f(3):27 f(4):47 f(5):6'

Calculating a few more f(n)’s using (*) and mod 3 arithmetic, f(1) = 1, f(2) = 1, f(3) =
2, f(4) = 1, f(3) = 0, f(6) = 0, f(T) =2, f(8) =0, f(9) = 1, f(10) = 1, f(11) = 2. Since
f(1) = f(9), f(2) = f(10) and f(3) = f(11) mod 3, (*) shows that f(a) = f(a mod 8), mod 3, a >
1.

Hence f(1996) = f(4) =1 (mod 3) so 3 does not divide f(1996).



QUESTION 4

Solution 1.

Let BE = BD with E on BC, so that AD = EC:

A
D
4x
2X
X 4ax 2X
B C
E
AB AD
B h — = i
y a standard theorem, CB- DO’ so in

AN CED and A CAB we have a common angle and

CE AD AB CA

Ch €D (OB CB’

Thus A CED ~ ACAB, sothat /CDE=/DCFE = £ ABC =2x.
Hence #BDFE = # BED = 4x , whence 9z = 180° so x = 20° .
Thus £A = 180° — 4z = 100° .

Solution 2.
Apply the law of sines to AABD and ABDC to get

AD sinx AD B BC _ sin3z

BD smaz ™ B0 BD  snos

Now massage the resulting trigonometric equation with standard identities to get

sin 2z (sin 4z + sin x) = sin 2z (sin bz + sinx) .

Since 0 < 2x < 90°, we get

5r — 90° = 90° — 4z ,

so that ZA = 100°.



QUESTION 5

Solution.

Let m

= ”Z K — Z rin]
k=1
= i{rk.n— [rin]}.
k=1

Now 0 <z — [z] < 1, and if ¢ is an integer, (c+z) — [c + 2] = x — [z].

Hence 0 < f(n Z 1 =m. Because f(n) is an integer, 0 < f(n) <m — 1.
k=1
To show that f(n) can achieve these bounds for n > 0, we assume that rp, = — * where ay, by are

bk:
integers; ap < by.

Then, if n = biba... by, (rgn) — [rkn] =0, k=1,2,...,m and thus f(n) =
Letting n = b1by...b,, — 1, then

ren = Tk(blbg N bm — 1)
= T‘k{<blbg e by — bk) + by, — 1)}
= integer + 71 (b, — 1).

This gives rin — ] = i (bg — 1) — [re(bg — 1)]
=5 9k (y — 1) — [bk (b — 1)}
= (o 50) [ ]
_ <ak—Z—:) ~(ag—1)
—1- Z—: =17
Hence F(n) = Y0 (1 — ) =m— 1.



