SOLUTIONS

QUESTION 1

Solution

Note that

$$f(1-x) = \frac{9^{1-x}}{9^{1-x}+3} = \frac{9}{9+3\times 9^x} = \frac{3}{9^x+3},$$

from which we get

$$f(x) + f(1-x) = \frac{9^x}{9^x + 3} + \frac{3}{9^x + 3} = 1.$$

Therefore,

$$\sum_{k=1}^{1995} f\left(\frac{k}{1996}\right)$$

$$= \sum_{k=1}^{997} \left[f\left(\frac{k}{1996}\right) + f\left(\frac{1996 - k}{1996}\right) \right] + f\left(\frac{998}{1996}\right)$$

$$= \sum_{k=1}^{997} \left[f\left(\frac{k}{1996}\right) + f\left(1 - \frac{k}{1996}\right) \right] + f\left(\frac{1}{2}\right)$$
(2)

$$=997 + \frac{3}{3+3} = 997\frac{1}{2}. (3)$$

QUESTION 2

Solution 1.

We prove equivalently that $a^{3a}b^{3b}c^{3c} \geq (abc)^{a+b+c}$. Due to complete symmetry in a, b and c, we may assume, without loss of generality, that $a \geq b \geq c$. Then $a-b \geq 0, b-c \geq 0, a-c \geq 0$ and $\frac{a}{b} \geq 1, \frac{b}{c} \geq 1, \frac{a}{c} \geq 1$. Therefore,

$$\frac{a^{3a}b^{3b}c^{3c}}{(abc)^{a+b+c}} = \left(\frac{a}{b}\right)^{a-b} \left(\frac{b}{c}\right)^{b-c} \left(\frac{a}{c}\right)^{a-c} \geq 1.$$

Solution 2.

If we assign the weights a,b,c to the numbers a,b,c, respectively, then by the wighted geometric-mean-harmonic-mean inequality followed by the arithmetic-mean-geometric-mean inequality, we get

$$a^{a+b+c}\sqrt{a^ab^bc^c} \geq rac{a+b+c}{rac{a}{a}+rac{b}{b}+rac{c}{c}} = rac{a+b+c}{3} \geq \sqrt[3]{abc},$$

from which $a^a b^b c^c \ge (abc)^{\frac{a+b+c}{3}}$ follows immediately.

QUESTION 3

Solution

For convenience, the interior angle in a boomerang which is greater than 180° will be called a "reflex angle".

Clearly, there are b reflex angles, each occurring in a different boomerang and each with the corresponding vertex in the interior of C. Angles around these vertices add up to $2b\pi$. On the other hand, the sum of all the interior angles of C is $(s-2)\pi$ and the sum of the interior angles of all the q quadrilaterals is $2\pi q$.

Therefore, $2\pi q \ge 2b\pi + (s-2)\pi$ from which $q \ge b + \frac{s-2}{2}$ follows.

QUESTION 4

Solution 1.

Since $1^3+2^3+\cdots+n^3=\left(\frac{n(n+1)}{2}\right)^2$, we see that when $k=0,\ (x_1,x_2,\cdots,x_n;y)=\left(1,2,\cdots,n;\frac{n(n+1)}{2}\right)$ is a solution. To see that we can generate infinitely many solutions in general, set $c=\frac{n(n+1)}{2}$ and notice that for all positive integers q, we have:

$$(c^{k}q^{3k+2})^{3} + (2c^{k}q^{3k+2})^{3} + \dots + (nc^{k}q^{3k+2})^{3}$$

$$= c^{3k}q^{3(3k+2)}(1^{3} + 2^{3} + \dots + n^{3})$$

$$= c^{3k}q^{3(3k+2)}\left(\frac{n(n+1)}{2}\right)^{2}$$

$$= c^{3k+2}q^{3(3k+2)} = (cq^{3})^{3k+2}.$$

That is, $(x_1, x_2, \dots, x_n; y) = (c^k q^{3k+2}, 2c^k q^{3k+2}, \dots, nc^k q^{3k+2}; cq^3)$ is a solution. This completes the proof.

Solution 2.

For any positive integer q, take $x_1 = x_2 = \cdots = x_n = n^{2k+1}q^{3k+2}$, $y = n^2q^3$. Then

$$\sum_{i=1}^{n} x_i^3 = n \cdot n^{6k+3} \cdot q^{9k+6} = (n^2 q^3)^{3k+2} = y^{3k+2}.$$

SOLUTIONS (Cont'd)

If n = 1, take $x_1 = q^{3k+2}$, $y = q^3$ as in solution 2. For n > 1, we look for solutions of the form

$$x_1 = x_2 = \cdots x_n = n^p, \ y = n^q.$$

Then

$$\sum_{i=1}^{n} x_i^3 = y^{3k+2} \Leftrightarrow n^{3p+1} = n^{(3k+2)q} \Leftrightarrow 3p+1 = (3k+2)q \Leftrightarrow (3k+2)q - 3p = 1.$$

The last equation is satisfied if we take

$$q = 3t + 2$$
 and $p = (3k + 2)t + (2k + 1)$ where t

is any nonnegative integer. Thus, infinetely many solutions in positive integers are given by

$$x_1 = x_2 = \cdots x_n = n^{(3k+2)t+(2k+1)}, \ y = n^{3t+2}.$$

SOLUTIONS (Cont'd)

QUESTION 5

Solution

Note first that $u_1 = 1 - u$. Since for all $x \in [u, 1]$, $u \le x$ and $1 - x \le 1 - u$ we have

$$1 - \left(\sqrt{ux} + \sqrt{(1-u)(1-x)}\right)^{2}$$

$$= 1 - ux - (1-u)(1-x) - 2\sqrt{ux(1-u)(1-x)}$$

$$= u + x - 2ux - 2\sqrt{ux(1-u)(1-x)}$$

$$\leq u + x - 2ux - 2u(1-x) = x - u.$$

Therefore,

$$f(x) = 0 \text{ if } 0 \le x \le u \tag{1}$$

and

$$f(x) \le x - u \text{ if } u \le x \le 1. \tag{2}$$

From (2) we get $u_2 = f(u_1) \le u_1 - u = 1 - 2u$ if $u_1 \ge u$. An easy induction then yields

$$u_{n+1} = f(u_n) \le u_n - u \le 1 - (n+1)u$$
 if $u_i \ge u$ for all $i = 1, 2, \dots, n$.

Thus for sufficiently large k, we must have $u_{k-1} < u$ and then $u_k = f(u_{k-1}) = 0$ by (1).