Canadian Mathematical Olympiad 1990

PROBLEM 1

A competition involving $n \geq 2$ players was held over k days. On each day, the players received scores of $1, 2, 3, \ldots, n$ points with no two players receiving the same score. At the end of the k days, it was found that each player had exactly 26 points in total. Determine all pairs (n, k) for which this is possible.

PROBLEM 2

A set of $\frac{1}{2}n(n+1)$ distinct numbers is arranged at random in a triangular array:

Let M_k be the largest number in the k-th row from the top. Find the probability that

$$M_1 < M_2 < M_3 < \cdots < M_n$$
.

PROBLEM 3

Let ABCD be a convex quadrilateral inscribed in a circle, and let diagonals AC and BD meet at X. The perpendiculars from X meet the sides AB, BC, CD, DA at A', B', C', D' respectively. Prove that

$$|A'B'| + |C'D'| = |A'D'| + |B'C'|.$$

(|A'B'|) is the length of line segment A'B', etc.)

PROBLEM 4

A particle can travel at speeds up to 2 metres per second along the x-axis, and up to 1 metre per second elsewhere in the plane. Provide a labelled sketch of the region which can be reached within one second by the particle starting at the origin.

PROBLEM 5

Suppose that a function f defined on the positive integers satisfies

$$f(1) = 1, \quad f(2) = 2,$$

$$f(n+2) = f(n+2 - f(n+1)) + f(n+1 - f(n)) \quad (n \ge 1).$$

- (a) Show that
 - (i) $0 \le f(n+1) f(n) \le 1$
 - (ii) if f(n) is odd, then f(n+1) = f(n) + 1.
- (b) Determine, with justification, all values of n for which

$$f(n) = 2^{10} + 1.$$