Canadian Mathematical Olympiad 1982

PROBLEM 1

In the diagram, OB_i is parallel and equal in length to A_iA_{i+1} for i = 1, 2, 3 and $4(A_5 = A_1)$. Show that the area of $B_1B_2B_3B_4$ is twice that of $A_1A_2A_3A_4$.

PROBLEM 2

If a, b and c are the roots of the equation $x^3 - x^2 - x - 1 = 0$,

- (i) show that a, b and c are distinct:
- (ii) show that

$$\frac{a^{1982}-b^{1982}}{a-b}+\frac{b^{1982}-c^{1982}}{b-c}+\frac{c^{1982}-a^{1982}}{c-a}$$

is an integer.

PROBLEM 3

Let \mathbb{R}^n be the *n*-dimensional Euclidean space. Determine the smallest number g(n) of points of a set in \mathbb{R}^n such that every point in \mathbb{R}^n is at irrational distance from at least one point in that set.

PROBLEM 4

Let p be a permutation of the set $S_n = \{1, 2, ..., n\}$. An element $j \in S_n$ is called a fixed point of p if p(j) = j. Let f_n be the number of permutations having no fixed points, and g_n be the number with exactly one fixed point. Show that $|f_n - g_n| = 1$.

PROBLEM 5

The altitudes of a tetrahedron ABCD are extended externally to points A', B', C' and D' respectively, where $AA' = k/h_a$, $BB' = k/h_b$, $CC' = k/h_c$ and DD' =

PAGE 2 1982

 k/h_d . Here, k is a constant and h_a denotes the length of the altitude of ABCD from vertex A, etc. Prove that the centroid of the tetrahedron A'B'C'D' coincides with the centroid of ABCD.